
1

SPL
COOKBOOK

www.raqsoft.com

2

contents

Chapter 1 Order-related Calculations………. 24

1.1 Access a record with its sequence number….………………………………………………………..…………………………………………………………... 25

1.2 Generate a nonexistent group name according to the sequence number in aggregate operation………………………………….... 27

1.3 Group records and do calculation by sequence numbers in each group…………………………………………………………………………… 29

1.4 Define subsets by the initial sequence number and the specified step value…………………………………………………………………….. 31

1.5 Loop through sequence numbers to access records and do inter-row calculation…………………………………………………………….. 33

1.6 Comparison of sequences…….... 35

1.7 Alignment calculation between members in sequences……………………………………………………………………………………………………. 37

1.8 Compare whether two sequences are equal……... 39

1.9 Positioning: locate a member in the sequence………………………………………………………………………………….………………………………. 41

1.10 Positioning: grouping by the positions of members in a sequence……………………………………………………………………………….… 43

1.11 Positioning: find a record by the position and do inter-row calculation…………………………………………………………………………... 45

1.12 Positioning: find records by positions and do inter-row calculation…………………………………………………………………………………. 48

1.13 Positioning:Group & count by segment…… 50

1.14 Positioning:Group & calculate average value by segment…………………………………………………………………………………………...... 52

3

1.15 Positioning: obtain records after sorting by their original sequence numbers………………………………………………………………… 54

1.16 Positioning: Find positions of members and group members by positions……………………………………………………………………... 56

1.17 Positioning: check whether a record contains all specified members………………………………………………………………………….…… 58

1.18 Positioning: determine whether a record exists by the primary key value……………………………………………………………………….. 60

1.19 Positioning: inter-row calculation over Top N records……………………………………………………………………………………………………… 62

1.20 Select: find the record containing the minimum value…………………………………………………………………………………………………….. 64

1.21 Select: find the record containing the maximum value……………………………………………………………………………………………………. 66

1.22 Select: search data by segment …….… 68

1.23 Select:Top N……..… 70

1.24 Select: set the primary key to find corresponding records in a related table…………………………………………………………………… 72

Chapter 2 Complex Query…… 74

2.1 Get records by checking whether a target value is contained in a specified set……………………………………………………………….. 75

2.2 Get records by checking whether a target value is contained in a specified set (the set is relatively large)……………………….. 78

2.3 Get records by matched foreign key values………. 81

2.4 Get records by matched non-foreign-key values……. 84

4

2.5 Speed up non-foreign-key mapping……... 87

2.6 Get records by matched multi-field foreign key values …………………………………………………………………………………………………... 90

2.7 An example of self join simplification…… 93

2.8 Get records by mismatched foreign key values…….. 96

2.9 Get mismatched records………. 99

2.10 An example of simplifying SQL double negation……… 102

2.11 Get matching records……. 105

2.12 Compare with all results of subquery………. 108

Chapter 3 Top N…….… 111

3.1 Get the maximum value……….. 112

3.2 Get the sequence number of the record containing the maximum value and do inter-row calculation…………………………… 115

3.3 Get another field value of the record containing the maximum value……………………………………………………………………………... 118

3.4 Find top N field values ……. 120

3.5 Get the sequence numbers of records containing top N values of a specified field………………………………………………………... 123

3.6 Get records containing top N values in a specified field…………………………………………………………………………………………………...127

5

3.7 Get other field values of the records containing top N values of a specified field……………………………………………………..…….. 129

3.8 Get top N records in each group after grouping………………………………………………………………………………………………………......... 132

3.9 Perform grouping & aggregation and get top N records in each group………………………………………………………………………….135

Chapter 4 Grouping & Aggregation ………..137

4.1 Aggregation operation: SUM……... 138

4.2 Aggregation operation: MAX & MIN……. 140

4.3 Aggregation operation: AVERAGE…… 142

4.4 Aggregation operation:COUNT…….. 144

4.5 Aggregation operation: logic AND ……….… 146

4.6 Aggregation operation:logic OR ……….. 148

4.7 Aggregation operation: Count distinct members…….. 150

4.8 Aggregation operation:MEDIAN ………... 152

4.9 Aggregation operation:RANKING……….. 154

4.10 Aggregation operation: An application scenario of RANKING……………………………………………………………………………………. 156

Chapter 5 Alignment grouping……. 158

6

5.1 Group by the specified order, each group keeps only one record……………………………………………………………………………………. 159

5.2 Group in specified order………... 161

5.3 Group in specified order and put unmatched records in a new group……………………………………………………………………………...164

5.4 Group by sequence number, each group keeps only one record……………………………………………………………………………………... 167

5.5 Group by sequence number……….. 169

5.6 Repeatedly grouped by sequence numbers……. 172

5.7 Group by segments of field values………... 174

5.8 Group by segment according to expression result………………………………………………………………………………………………………...… 176

5.9 Group by enumerated conditions, records are not repeatedly grouped…………………………………………………………………………... 178

5.10 Group by enumerated conditions, unmatched records are put in a new group……………………………………………………………... 180

5.11 Repeatedly grouped by enumerated conditions………. 182

Chapter 6 Subsets after grouping……… 184

6.1 Inter-row calculation in subsets after grouping…….. 185

6.2 Group in the order of record and perform count……….. 187

6.3 Ordered conditional grouping ………... 189

7

6.4 Group by sequence number……….. 191

6.5 Multilevel grouping & aggregation………. 193

6.6 Ordered grouping of big data……. 195

6.7 Ordered conditional grouping of big data……….. 197

Chapter 7 Loop calculation……… 199

7.1 Merge a sequence and a new member in loop……... 200

7.2 Loop assignment ………. 202

7.3 Loop calculation: complex inter-row calculation……. 204

7.4 Loop calculation: maximum continuous rising days…… 206

7.5 Loop calculation: nested loop…….. 208

7.6 Loop calculation: loop number…… 210

7.7 Loop calculation:calculate adjacent data by position during the loop calculation………………………………………………………… 212

7.8 Loop calculation: iterative accumulation…….…… 214

7.9 Loop calculation:group and calculate ranking……. 216

7.10 Loop calculation: calculate dense ranking in each group…………………………………………………………………………………………… 218

8

7.11 Loop calculation: iterative sum………. 220

7.12 Loop calculation: user-defined iterative calculation……………………………………………………………………………………………………….. 222

Chapter 8 Join query over multiple tables…… 224

8.1 Perform filtering through multi-level association………………………………………………………………………………………………………..…… 225

8.2 Switch foreign key field values to the corresponding records………………………………………………………………………………………….. 227

8.3 Get records by matched foreign key values……... 229

8.4 Get records by mismatched foreign key values………………………………………………………………………………………………..……………… 231

8.5 Join query over two tables……. 233

8.6 Perform a multi-field join and conditional filtering over two tables…………………………………………………………………………………. 235

8.7 Join query over multiple tables……….. 237

8.8 Join two tables of the same order by merging……… 239

8.9 Join big data tables of the same order by merging……. 241

8.10 Perform a left join by multi-field primary key of dimension table………………………………………………………………………………….. 243

8.11 Perform a left join between two tables………..… 245

8.12 Perform a full join between two tables……... 247

9

8.13 Cartesian product with filter condition……... 249

8.14 Use Cartesian product to calculate matrix multiplication……………………………………………………………………………………………….. 251

8.15 Use left join to calculate Cartesian product……. 253

8.16 Join query between big data tables and large dimension table……………………………………………………………………………………... 255

8.17 Fast join query between small data table and large dimension table…………………………………………………………………………….. 257

8.18 Fast join query over same-order data tables and large dimension table ……………………………………………………………………….259

8.19 Join two tables through locating records by sequence numbers…………………………………………………………………………………… 261

8.20 Perform an alignment join by positions to shuffle values of a field……………………………………………………………………………..… 263

8.21 Perform alignment join over multiple tables by sequence numbers……………………………………………………………………………… 265

8.22 Cross Apply operation…… 267

8.23 Outer Apply operation……...……… 269

8.24 Convert Apply operation to Cartesian product…… 271

8.25 Complex uses of Apply operation……….. 273

Chapter 9 Inter-set operations……... 275

9.1 Concatenation of two sets…….. 276

10

9.2 Intersection of two sets………..…….. 278

9.3 Union of two sets……..… 280

9.4 Difference of two sets……… 282

9.5 XOR operation of two sets…….. 284

9.6 Mixed use of concatenation set and difference set…….. 286

9.7 Set operations of sequences: intersection and union………………………………………………………………………………………………………. 288

9.8 Concatenation of all set members in a sequence……….. 290

9.9 The union of all set members in a sequence……. 292

9.10 Merge same-order sets in the current order to calculate concatenation……………………………………………………………………….. 294

9.11 Merge same-order sets in the current order to calculate union………………………………………………………………………………….…. 296

9.12 Merge same-order sets in the current order to calculate intersection…………………………………………………………………………… 298

9.13 Merge same-order sets in the current order to calculate XOR……………………………………………………………………………………….. 300

9.14 Merge same-order sets in the current order to calculate difference……………………………………………………………………………… 302

9.15 Merge table sequences by primary key to calculate concatenation …………………………………………………………………………..….. 305

9.16 Merge table sequences to find differences……. 307

11

9.17 Merge unordered tables to calculate union…… 309

9.18 Aggregation of sequences: union & difference…… 311

9.19 Aggregation of sequences:intersection……….. 313

9.20 Perform mixed set operations over two small files…… 315

9.21 Perform complex set operations over two small files…………………………………………………………………………………………………….. 317

9.22 Merge two big data tables to calculate concatenation………………………………………………………………………………………………….. 319

9.23 Merge two big data tables to calculate union……... 321

Chapter 10 Transposition…… 323

10.1 Row to column transposition……. 324

10.2 Column to row transposition……. 329

10.3 Bidirectional transposition………..……. 333

10.4 Dynamic row to column transposition……….337

10.5 Row to column transposition with dynamic columns by filling into a table……………………………………………………………………. 339

10.6 Convert multiple rows to multiple rows of another form……………………………………………………………………………………………….. 342

10.7 Transpose rows to columns by position-based value assignment…………………………………………………………………………………. 344

12

10.8 Transpose rows to columns, and do inter-column calculations at the same time…………………………………………………………... 346

10.9 Dynamic transposition after the main and sub table join………………………………………………………………………………………………. 348

10.10 Dynamic row to column transposition after multi-table join………………………………………………………………………………………... 350

10.11 Transposition in side by side column group layout……………………………………………………………………………………………………… 353

Chapter 11 Recursion……. 355

11.1 Recursively search single references ……….. 356

11.2 Traverse all files in the directory…….. 358

11.3 Recursively search all references by loop……….. 360

11.4 Recursively search references until the specified value………………………………………………………………………………………………….. 364

11.5 Search the upper level reference…… 368

11.6 Find records with the specified value in the reference chain with the parent value listed……………………………………………… 371

11.7 Search for leaf records …….…. 374

11.8 Find all upper level references………..…… 377

11.9 Hanoi Tower problem ……. 380

11.10 Pirate treasure division problem………... 383

13

11.11 Traverse the directories to summarize all the files……………………………………………………………………………………………..………… 385

Chapter 12 Using structured text data…… 387

12.1 Filter small files…… 388

12.2 Read certain fields in a text file…….. 390

12.3 Read data in a text file using specified separator……… 392

12.4 Aggregate data in a small file to get sum………..….. 394

12.5 Inter-column calculation in a small file……... 396

12.6 Perform comprehensive calculations using small text files…………………………………………………………………………………………….. 398

12.7 Read untitled structured text data ……... 400

12.8 Read a text file using specified data type and format……………………………………………………………………………………………………. 402

12.9 Read structured text data according to the specified character set……………………………………………………………………………….. 404

12.10 Sort data in a small text file in ascending order……… 406

12.11 Sort data in a small text file in descending order……. 408

12.12 Sort structured data in a small text file by multi fields in specified order…………………………………………………………………….. 410

12.13 Perform grouping & aggregation over a small file………………………………………………………………………………………………………. 412

14

12.14 Perform filter after grouping over a small file……………………………………………………………………………………………………….…….. 414

12.15 Deduplication for a small file………. 416

12.16 Count distinct for small file data……….. 418

12.17 Perform grouping & count distinct in each group over a small file……………………………………………………………………………… 420

12.18 Associatively query data over multiple files…………………………………………………………………………………………….…………………… 422

12.19 Join small files to query non-associative field…… 424

12.20 Join small associative files into a wide table……… 426

12.21 Combine data from multiple text files…………..………... 428

12.22 Divide data in a text file into groups and write them to different files………………………………………………………………………… 430

12.23 Write data in a text file to different files according to judgements …………………………………………………………………………….. 432

Chapter 13 Using structured big text file……….………. 434

13.1 Filter a big file……..…… 435

13.2 Perform aggregate sum over a big text file…… 437

13.3 Inter-column calculation in a big text file………. 439

13.4 Perform comprehensive calculations over a big text file………………………………………………………………………………………………... 441

15

13.5 Sort a big text file………..… 443

13.6 Sort a big text file in descending order…….. 445

13.7 Sort a big text file by multiple fields in specified order………………………………………………………………………………………………….. 447

13.8 Find records in a big data table that match data in another big data table……………………………………………………………………. 449

13.9 Perform grouping & aggregation over a big file, with small result set…………………………………………………………………………... 452

13.10 Perform grouping & aggregation over a big file, with large result set…………………………………………………………………………. 454

13.11 Filter after grouping over a big file……. 456

13.12 Deduplication of big text file………... 458

13.13 Count distinct over a big text file………. 460

13.14 Group & count distinct in each group over a big text file…………………………………………………………………………………………….. 462

13.15 Group a big file by values of a certain field, and query record containing the max value of another field in each group.. 464

13.16 Merge & calculate data in multiple big data files…… 466

13.17 The join filter over a large file and a small file……. 468

13.18 Join a large file and a small file into a wide table to query…………………………………………………………………………………………... 470

13.19 Merge-join two big files…….. 472

16

13.20 Set operations of multiple big text files………. 474

13.21 Divide a big text file into groups and write them to different files………………………………………………………………………………. 476

13.22 Write data in a large text file to different files according to judgements……………………………………………………………………... 478

13.23 Organize a fixed-structure big text file into structured data………………………………………………………………………………………… 480

13.24 Organize a big file with indefinite-line structure into structured data………………………………………………………………………… 482

13.25 Find the lines containing keyword in all big text files in the specified directory…………………………………………………………... 484

13.26 Replace specified text in all text files under the specified directory……………………………………………………………………………... 486

13.27 Count the frequencies of each word in a big text file…………………………………………………………………………………………………... 488

13.28 Count the frequencies of each letter in a big text file…………………………………………………………………………………………………... 490

13.29 Remove duplicate lines from a big text file……….. 492

13.30 Remove repeated paragraphs from a big text file………………………………………………………………………………………………………... 494

Chapter 14 Querying text data directly with SQL ……….. 496

14.1 Filter……. 497

14.2 Aggregate……… 499

14.3 Inter-column calculation……... 501

17

14.4 CASE statement………..…… 503

14.5 Sort……..…… 505

14.6 TOP-N………. 507

14.7 Group & Aggregate……….. 509

14.8 Filter after grouping………. 511

14.9 Select distinct……… 513

14.10 Count distinct…… 515

14.11 Count distinct in each group after grouping……. 517

14.12 Join query over two text files……… 519

14.13 Join query over multiple files……… 521

14.14 Multi-level join query over multiple files……. 523

14.15 Using nested subquery…….. 525

14.16 Using common table expression (CTE) ………. 527

14.17 Using command line to execute SQL…….. 529

Chapter 15 Using Excel data…… 531

18

15.1 Read xlsx data in simple format……..…………………… 532

15.2 Read xlsx data with complex header…… 534

15.3 Read free format xlsx data……..… 536

15.4 Read the crosstab in an xlsx file …… 539

15.5 Read the main & sub table in xlsx file………. 541

15.6 Read big xlsx file………. 544

15.7 Write a data table to xlsx file……. 546

15.8 Append data table to xlsx file………... 548

15.9 Write data table to different worksheets of an xlsx file…………………………………………………………………………………………………. 550

15.10 Export a large amount of data to xlsx file……. 552

15.11 Sort after join……. 554

15.12 Specify display attributes……….. 556

15.13 Fill in the specified cell or area of an xlsx file……. 558

15.14 Export row-style report to xlsx file…….. 560

15.15 Export multi-level grouped report to xlsx file……. 563

19

15.16 Export crosstab report to xlsx file……… 566

15.17 Merge multiple xlsx files of same structure……… 568

15.18 Split an xlsx file and export it to different xlsx files……………………………………………………………………………………………………… 570

Chapter 16 Using JSON and XML data…………………………………………..……………………………………………………………………………………… 572

16.1 Import single-layer JSON file…… 573

16.2 Import multi-layer JSON file with same-structure detailed data……………………………………………………………………………………. 575

16.3 Import multi-layer JSON file with different-structure detailed data………………………………………………………………………………. 582

16.4 Nested aggregation………. 589

16.5 Get field values recursively & merge members of sequences recursively to get SUM……………………………………………………. 591

16.6 Store a JSON file to the database……….. 593

16.7 Store a multi-layer JSON file to multiple database tables………………………………………………………………………………………………. 595

16.8 Output the data table as an XML string with elements only …………………………………………………………………………………………..603

16.9 Import an element-only XML file and organize it according to specified format……………………………………………………………. 605

16.10 Import XML file with both elements and attributes……………………………………………………………………………………………………... 607

16.11 Import XML file, perform alignment merging and then filtering………………………………………………………………………………….. 609

20

16.12 Import elements of the specified layer from an XML file with different element structure………………………………………..… 612

16.13 Import elements of the specified layer from an XML file with different sub-node element structure……………………..…… 614

16.14 Join query over XML file and database data……… 617

16.15 Parse XML data in batches……… 620

16.16 Call external WebService according to parameters and import XML data…………………………………………………………………… 622

16.17 Get different data from XML file according to parameters…………………………………………………………………………………………... 624

Chapter 17 Unstructured text handling……….. 627

17.1 Multi-line, fixed-structure text structuralization……….. 628

17.2 Varied structure text structuralization……….630

17.3 Parse text with regular expression and organize it into structured data………………………………………………………………………… 632

17.4 Parse text with regular expression and organize it into structured data (One record corresponds to multiple lines)……... 634

17.5 Read in text and perform transposition……. 636

17.6 Complex text structuralization………. 638

17.7 Search all text files in the specified directory to find the lines containing keywords……………………………………………………… 643

17.8 Replace the specified text in all text files in the specified directory………………………………………………………………………………...645

21

17.9 Count the frequencies of each English word in a text file………………………………………………………………………………………….…… 647

17.10 Remove duplicate lines from a text file………... 649

17.11 Count the frequencies of each letter in a text file…… 651

17.12 Remove duplicate paragraph from a text file…….. 653

Chapter 18 String & datetime handling……….. 655

18.1 Concatenate strings in two columns……. 656

18.2 Concatenate string and other type of value………... 658

18.3 Concatenate members in a sequence………. 660

18.4 Add quotation marks to members when concatenating members of a sequence…………………………………………………………. 662

18.5 Convert a table sequence to CSV format……….. 664

18.6 Split a string into a sequence of characters……. 666

18.7 Split strings into a sequence of words………. 668

18.8 Use tab as a separator to split a string …….. 670

18.9 Use comma as the separator to split a string ……... 672

18.10 Split a string into two segments by specified separator……………………………………………………………………………………………….. 674

22

18.11 Split a string with regular expression……… 676

18.12 Parse a string into numerical value……. 678

18.13 Parse a percentage string into a numerical value……. 680

18.14 Automatically parse a string into the proper data type………………………………………………………………………………………………... 682

18.15 Split a string and parse the split members into proper data types………………………………………………………………………………. 684

18.16 Parse string to table sequence……... 686

18.17 Parse the character type field in a table sequence with regular expression………………………………………………………………….. 688

18.18 Parse indefinite-structure text with regular expression………………………………………………………………………………………………... 690

18.19 Use code to parse character type fields in a table sequence………………………………………………………………………………………... 692

18.20 Modify the filter condition in the SQL statement……. 694

18.21 Translate standard SQL statements into specified database format……………………………………………………………………………... 696

18.22 Parse and analyze HTML file…… 699

18.23 Parse HTML file to get table sequence……. 701

18.24 Calculate the date N days after a certain date………... 703

18.25 Calculate the number of days between two dates………………………………………………………………………………………………………...705

23

18.26 Calculate the number of seconds / minutes between two datetimes………………………………………………………………………...… 707

18.27 Calculate the first day and last day of the week……... 709

18.28 Calculate the average daily sales for a quarter……….. 711

18.29 Calculate age…….. 713

18.30 Calculate the date N months before a certain date……………………………………………………………………………………………………... 715

18.31 Calculate the date after N working days……… 717

18.32 Get a sequence of working days……….. 719

18.33 Get a sequence of dates between two dates…….. 721

18.34 Divide the period between two dates equally into n segments…………………………………………………………………………………… 723

24

SPL
COOKBOOK

Order-related Calculation

Chapter 1

25

1.1 Access a record with its sequence number

Get a record from a table according to its sequence number.

Get the trading information of the first trading day and the last trading day in Shanghai

Stock Exchange in 2019.

Date Open Close Amount

2019/12/31 3036.3858 3050.124 2.27E11

2019/12/30 2998.1689 3040.0239 2.67E11

2019/12/27 3006.8517 3005.0355 2.58E11

2019/12/26 2981.2485 3007.3546 1.96E11

2019/12/25 2980.4276 2981.8805 1.9E11

… … … …

26

1.1 Access a record with its sequence number

A B

1 =file("000001.csv").import@ct() /Import data file

2 =A1.select(year(Date)==2019).sort(Date) /Select records of 2019 and sort them by date

3 =A2(1)|A2.m(-1) /Retrieve information of the first and last trading days

SPL script is as follows, where A() and A.m() are used to get members:

Date Open Close Amount

2019/01/02 2497.8805 2465.291 9.76E10

2019/12/31 3036.3858 3050.124 2.27E11

A3

27

1.2 Generate a nonexistent group name according to the sequence number in aggregate
operation

In an alignment aggregate operation, generate a nonexistent group name according to the sequence number.

Based on the employee table, calculate the average salaries of employees in California, Texas, New

York, and Florida; and the average of those in other states in a new group.

ID NAME STATE SALARY

1 Rebecca California 7000

2 Ashley New York 11000

3 Rachel New Mexico 9000

4 Emily Texas 7000

5 Ashley Texas 16000

… … … …

28

1.2 Generate a nonexistent group name according to the sequence number in aggregate
operation

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from EMPLOYEE") /Query employee table

3 [California,Texas,New York,Florida] /Create state sequence

4 =A2.align@an(A3,STATE)
/Group the employee table in alignment by state; @a option returns all
matching members in each group, and @n option puts all mismatched
members in a new group at the end.

5
=A4.new(if (#>A3.p(-
1),"Other",STATE):STATE,~.avg(SALARY):AvgSalary)

/Calculate the average salary of each group to generate a new table sequence.
A.p(-1) gets the sequence number of the last member, then rename the group
Other.

STATE SALARY

California 7700.0

Texas 7592.59

New York 7677.77

Florida 7145.16

Other 7308.1

A5

SPL script is as follows, where A.p(-1) is used to obtain the sequence number of the last member:

29

1.3 Group records and do calculation by sequence numbers in each group

We can group records and do calculation by sequence numbers in each group.
Here is a table that records daily attendance information, as shown below:

Per_Code in_out Date Time Type

1110263 1 2013-10-11 09:17:14 In

1110263 6 2013-10-11 11:37:00 Break

1110263 5 2013-10-11 11:38:21 Return

1110263 0 2013-10-11 11:43:21 NULL

1110263 6 2013-10-11 13:21:30 Break

1110263 5 2013-10-11 14:25:58 Return

1110263 2 2013-10-11 18:28:55 Out

Per_Code Date In Out Break Return

1110263 2013-10-11 9:17:14 18:28:55 11:37:00 11:38:21

1110263 2013-10-11 9:17:14 18:28:55 13:21:30 14:25:58

Every seven pieces of data are one group. We want to convert them into the following result:

30

1.3 Group records and do calculation by sequence numbers in each group

Create the target data structure, arrange every seven records according to the required structure and then populate
data into the target table.
SPL script is as follows, where A() and A.m() are used to access members with their sequence numbers:

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from DailyTime order by Per_Code,Date,Time")/Query data and sort it by Per_code, Date and Time

3 =A2.group@o((#-1)\7) /Group by Per_code and Date

4 =create(Per_Code,Date,In,Out,Break,Return) /Create an empty sequence table to store the final result

5 =A3.(~([1,7,2,3,1,7,5,6]))
/For each group, use A([1,7,2,3,1,7,5,6]) to get the records one by
one, which make an ordered all day record.

6
=A5.conj([~.Per_Code,~.Date]|~.(Time).m([1,2,3,4])|[~.Per_Code,~

.Date]|~.(Time).m([5,6,7,8]))
/Arrange values in each record into a sequence, and use A.m() access
multiple members at a time

7 >A4.record(A6) /Fill members of each sequence in A4's table sequence

Per_Code Date In Out Break Return

1110263 2013-10-11 09:17:14 18:28:55 11:37:00 11:38:21

1110263 2013-10-11 09:17:14 18:28:55 13:21:30 14:25:58

… … … … … …

A4

31

1.4 Get subsets by the initial sequence number and the specified step value

We can get subsets from a sequence by the initial sequence number and the specified step value, and

perform set operations.

Find the prime numbers within 100.

32

1.4 Get subsets by the initial sequence number and the specified step value

The SPL script is as follows, where step() function is used to get members according to the fixed span:

A B

1 =to(100) /Create a sequence of 1 to 100

2 =to(2,10) /Create a sequence of 2 to 10

3 =A2.(A1.step(~,~*2)) /For each member in A2, calculate the n multiple within 100 (n > 1)

4 =A1.to(2,)\A3.conj()
Remove 1 and all composite numbers within 100 to get all prime numbers within
100. A3.conj() gets the composite numbers within 100.

Member

2

3

5

7

11

…

A4

33

1.5 Loop through sequence numbers to access records and do inter-row calculation

We can access multiple records by looping a numerical sequence of sequence numbers and calculate link relative ratio.

Below is the closing prices in the last 10 trading days in 2019 at Shanghai Stock Exchange, calculate the growth rate of

closing price for each day compared with the previous day.

Date Open Close Amount

2019/12/31 3036.3858 3050.124 2.27E11

2019/12/30 2998.1689 3040.0239 2.67E11

2019/12/27 3006.8517 3005.0355 2.58E11

2019/12/26 2981.2485 3007.3546 1.96E11

2019/12/25 2980.4276 2981.8805 1.9E11

… … … …

34

1.5 Loop through sequence numbers to access records and do inter-row calculation

A B

1 =file("000001.csv").import@ct() /Import data file

2 =A1.select(year(Date)==2019).sort(Date) /Select records of 2019 and sort them by date

3 =A2.p(to(-10,-1))
/Use p() function to return the sequence numbers of the
last 10 members

4
=A3.new(A2(~).Date:Date, string(A2(~).Close/A2(~-
1).Close-1, "0.000%"):Increase)

/Recursively calculate the growth rate of the closing price
of each trading day compared with the previous trading
day

SPL script is as follows, where the A.p() function is used to return the sequence numbers of the last 10

members:

A4 Date Increase

2019/12/18 -0.178%

2019/12/19 0.001%

2019/12/20 -0.402%

2019/12/23 -1.404%

2019/12/24 0.673%

… …

35

1.6 Comparison of sequences

Compare two sequences to filter records.

According to the Olympic medal table, find out which Olympic Games China ranked higher than

Russia.

Game Nation Medal

30 USA 46,29,29

30 China 38,27,23

30 UK 29,17,19

30 Russia 24,26,32

30 Korea 13,8,7

… … …

36

1.6 Comparison of sequences

SPL script is as follows, where the ">" symbol is used to compare sequences by comparing members successively

at same positions:

A B

1 =file("Olympic.csv").import@cqt() /Import Olympic Game Rankings

2 =A1.run(Medal=Medal.split@cq()) /Slit Medal field into sequence by commas

3 =A2.group(Game) /Group by game

4
=A3.select(~.select(Nation=="China").Medal>~.selec
t(Nation=="Russia").Medal)

/Use ">" to compare the medal sequences of China and Russia by comparing
the number of gold medals, silver medals and bronze medals in order, and
select the games where China ranks higher.

5 =A4.(Game) /List the desired games

A5 Game

23

25

28

29

30

Similarly, we can use "<" and "==" to compare sequences.

37

1.7 Alignment calculation between members in sequences

The basic arithmetic operations among members at the same positions between sequences.

Calculate the daily relative yield of SZSE 300 Index (399007) to SZSE Component Index (399001) from

December 24 to 26, 2019.

Date Code Name Open Close Amount

2020/2/18 399001 Shenzhen 11244.7651 11306.4863 3.19E+11

2020/2/17 399001 Shenzhen 10974.9328 11241.4993 3.12E+11

2020/2/14 399001 Shenzhen 10854.4551 10916.3117 2.77E+11

2020/2/13 399001 Shenzhen 10936.5011 10864.3222 2.87E+11

2020/2/12 399001 Shenzhen 10735.0475 10940.7952 2.66E+11

… … … … … …

38

1.7 Alignment calculation between members in sequences

Syntax A ?? B is used to perform the alignment operation "?" over members of two sequences, where ?{+,-

,*,/,%,\}. SPL script is as follows:

A B

1 =connect("db") /Connect to database

2
=["399007","399001"].(A1.query("select * from StockIndex where
code=? and date between '2019-12-23' and '2019-12-26'",~))

/Read the data of SZSE 300 Index and SZSE Component
Index from December 23 to 26, 2019; the aim of reading
data on Dec. 23 is to calculate the increase

3 =A2.(~.calc(to(2,4),Close/Close[-1])) /Calculate the daily increase from the 24th to the 26th

4 =A3(1)--A3(2)
/Alignment subtraction between the two sequences to get
the relative yield

Member

0.0031349096521252617

0.0011897141619391371

-4.4910504685946595E-4

A4

39

1.8 Compare whether two sequences are equal

Compare whether the members at same positions in two sequences are all equal.

Below is a part of a file generated by random sampling. Compare whether same IDs are selected by

the two random samplings.

ID Predicted_Y Original_Y

10 0.012388464367608093 0.0

11 0.01519899123978988 0.0

13 0.0007920238885061248 0.0

19 0.0012656367468159102 0.0

21 0.009460545997473379 0.0

23 0.024176791871681664 0.0

… … …

40

1.8 Compare whether two sequences are equal

SPL script is as follows, where cmp() function is used to compare members at same positions in the two

sequences :

A B

1 =file("p_old.csv").import@ct() /Read the first output file

2 =file("p_new.csv").import@ct() /Read the second output file

3 =cmp(A1.(ID),A2.(ID))
/Compare whether the IDs generated in the files are identical (member values are
equal and the order is the same)

If the order of IDs is expected to be different, use eq() function to compare whether the members of the two

sequences are the same:

A B

3 =A1.(ID).eq(A2.(ID)) /Compare their ID values only when the order is not necessarily the same

Member

0

A3 A result of 0 indicates that the IDs in the two files are exactly the same.

41

1.9 Location: locate a member in the sequence

Locate a member's position in the sequence.

In the following Teachers table, the first column contains names, the second column contains subjects, followed by

the course code (null is empty).

Teachers.txt

Petitti Matematica mif mig vif vig null null null null null null null null …

Canales Apesca luc lud mac mad mic mid juc jud null null null null …

Lucero NavegacionI lub luc lud lue mab mac mad mae mib mic mid mie …

Bergamaschi TecPesc lua luf maa maf mia mif jua juf via vif null null …

… … … … … … … … … … … … … … …

List available teachers for each

course according to the Teachers

table and the Courses table on the

right.

Monday Tuesday Wednesday Thursday Friday

lua maa mia jua via

lub mab mib jub vib

luc mac mic juc vic

lud mad mid jud vid

lue mae mie jue vie

luf maf mif juf vif

lug mag mig jug vig

42

1.9 Location: locate a member in the sequence

A B

1 =file("Teachers.txt").import() /Import data file

2
=A1.new(#1:professor,~.array().to(3,).select(~!=null):co
deArray)

/Generate a two-column table sequence, where the first column is the
teacher name and the second column is the course list.

3 =file("Courses.txt").import@t().conj(~.array()) /Import the Courses table and merge them into one sequence

4 =A3.(A2.select(codeArray.pos(A3.~)).(professor))
/Loop the course sequence and use pos() function to find the current
course in A2's course list and select available teachers for it

5
=create(Monday,Tuesday,Wednesday,Thursday,Friday).r
ecord(A4.(~.concat@c()))

/Create a timetable from Monday to Friday and fill in the teachers
accordingly

SPL script is as follows, where the pos() function is used to obtain a member's position.

Monday Tuesday Wednesday Thursday Friday

Bergamaschi,Puebla Bergamaschi,Pue… Bergamaschi,Puebla Bergamaschi,Pue… Bergamaschi,Puebla

Lucero,Puebla,Lu… Lucero,Mazza,Pu… Lucero,Puebla,Chi… Lucero,Mazza,Pe… Lucero,Puebla,Vel…

Canales,Lucero,P… Canales,Lucero,M… Canales,Lucero,P… Canales,Lucero,M… Lucero,Velasco,Lu…

… … … … …

A5

43

1.10 Location: grouping by the positions of members in a sequence

Get positions of members using binary search and perform grouping directly by the positions.

Find customers who didn't place an order in 2014 according to Sales table and Customer table.

Customer

ID

Name

State

…

Sales

ID

CustomerID

OrderDate

…

44

1.10 Location: grouping by the positions of members in a sequence

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Sales where
year(OrderDate)=2014")

/Query sales records of 2014

3 =A1.query("select * from Customer") /Query Customer table

4 =A3.(ID).sort() /List and sort customer IDs

5 =A2.align(A4.len(), A4.pos@b(CustomerID))
/Use pos() function to get customer IDs and group sales records by the IDs. Since the
customer IDs are ordered, @b option is used to do a binary search to speed up the
location

6 =A3(A5.pos@a(null)) /Use pos@a() to select all customers without orders information (corresponding values are
nulls); only the first-found customer will be returned without the @a option

SPL script is as follows, where A.pos() function is used to locate the positions of members in the sequence:

ID Name State …

ALFKI CMA-CGM Texas …

CENTC Nedlloyd Florida …

A6

45

1.11 Location: find a record by the position and do inter-row calculation

Find the position of the maximum value, get the corresponding record and perform inter-row calculation.

Based on the Transaction table below, calculate the growth rate on the day having the highest closing price

at SSE Composite Index compared with the previous day.

Date Open Close Amount

2019/12/31 3036.3858 3050.124 2.27E11

2019/12/30 2998.1689 3040.0239 2.67E11

2019/12/27 3006.8517 3005.0355 2.58E11

2019/12/26 2981.2485 3007.3546 1.96E11

2019/12/25 2980.4276 2981.8805 1.9E11

… … … …

46

1.11 Location: find a record by the position and do inter-row calculation

A B

1 =file("000001.csv").import@ct() /Import data file

2 =A1.sort(Date) /Sort by date

3 =A2.pmax(Close)
/Get the sequence number of the record with the highest
closing price

4 =A2.calc(A3,Close/Close[-1]-1)
/Divide the closing price of the current day by that of the
previous day to get the growth rate

We need to know the sequence number of the record having the highest closing price, and

compare it with the price of the previous trading day to get the result.

SPL script is as follows, where pmax () function is used to get the sequence number containing the

maximum value:

Similarly, you can use pmin() function to get the sequence number of the minimum value:

A B

3 =A3.pmin(Close)
/Get the sequence number of the record with the lowest
closing price

47

1.11 Location: find a record by the position and do inter-row calculation

There are maybe more than one record that contains the maximum value. If you want to return the

sequence numbers of all eligible records, just use @a option in the pmax() function:

A B

3 =A2.pmax@a(Close)
/Get the sequence numbers of all eligible records with the
highest closing price

4 =A2.calc(A3,Close/Close[-1]-1)
/Recursively divide the closing price of the current day by
that of the previous day to get the growth rate

If you want to locate a record from back to front, just use the @z option in the pmax() function:

A B

3 =A2.pmax@z(Close) /Get the sequence number of the record with the highest
closing price from back to front

48

1.12 Location: find records by positions and do inter-row calculation

Locate positions of multiple records according to a specified condition and perform inter-row calculation.

Based on the stock transaction table below, calculate the growth rate of the transaction amount compared

with the previous day on the trading days when the closing price rises by more than 3%.

Date Open Close Amount

2019/12/31 3036.3858 3050.124 2.27E11

2019/12/30 2998.1689 3040.0239 2.67E11

2019/12/27 3006.8517 3005.0355 2.58E11

2019/12/26 2981.2485 3007.3546 1.96E11

2019/12/25 2980.4276 2981.8805 1.9E11

… … … …

49

1.12 Location: find records by positions and do inter-row calculation

A B

1 =file("000001.csv").import@ct() /Import data file

2 =A1.select(year(Date)==2019).sort(Date) /Select the stock records of 2019

3 =A2.pselect@a(Close/Close[-1]>1.03)
/Get the sequence numbers of records where the closing prices
increase by more than 3%; @a option returns the sequence
numbers of all eligible records

4
=A3.new(A2(~).Date:Date, A2(~).Amount/A2(~-1).Amount-
1:'Amount increase')

/Recursively divide the current trading amount by trading
amount of the previous day to calculate growth rate

We need to find the sequence numbers of the records whose closing prices rise by more than 3%, and compare

them with the previous trading day to get the result. SPL script is as follows, where pselect() function is used to

locate the sequence numbers of members:

Member

161

187

211

Date Amount increase

2019/02/25 0.758490566037736

2019/03/29 0.3344827586206895

2019/05/10 0.3908629441624365

A3 A4

We can see that the trading volume of the three days when the closing price rose by more than 3% was

significantly higher than that of the previous day.

50

1.13 Location:Group & count by segment

Group records by sequence numbers of segments and count records in each group.

The following is an employee table.

Based on the salary table below, count the employees in three salary ranges respectively

(<8000, >=8000 and <12000, >12000).

ID NAME BIRTHDAY SALARY

1 Rebecca 1974-11-20 7000

2 Ashley 1980-07-19 11000

3 Rachel 1970-12-17 9000

4 Emily 1985-03-07 7000

5 Ashley 1975-05-13 16000

… … … …

51

A5

1.13 Location:Group & count by segment

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from EMPLOYEE") /Query EMPLOYEE table

3 [0,8000,12000] /Define salary ranges

4 =A2.align@a(A3.len(),A3.pseg(SALARY)) /Use pseg() function to get the corresponding salary range

5 =A4.new(A3(#):SALARY,~.count():COUNT) /Count the employees in each group

SPL script is as follows, where pseg(x) function is used to locate a segment of records:

SALARY COUNT

0 308

8000 153

12000 39

52

1.14 Location:Group & calculate average value by segment

Perform grouping by the sequence numbers of segments and calculate average of each group.

Calculate average salary for employees who have been with the company less than 10 years,

between 10 to 20 years and not less than 20 years respectively, based on the EMPLOYEE table.

ID NAME HIREDATE SALARY

1 Rebecca 2005-03-11 7000

2 Ashley 2008-03-16 11000

3 Rachel 2010-12-01 9000

4 Emily 2006-08-15 7000

5 Ashley 2004-07-30 16000

… … … …

53

A5

1.14 Location:Group & calculate average value by segment

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from EMPLOYEE") /Query EMPLOYEE table

3 [0,10,20] /Define intervals of stay

4
=A2.align@a(A3.len(),A3.pseg(year(now())-
~,year(HIREDATE)))

/Use pseg() function to get the corresponding
interval for each hire date

5 =A4.new(A3(#):EntryYears,~.avg(SALARY):AvgSalary) /Calculate the average salary of each group

SPL script is as follows, where the pseg(x,y) function is used to get a segment of records :

EntryYears AvgSalary

0 6807.69

10 7417.78

20 7324.32

54

1.15 Location: obtain records by their original sequence numbers after sorting

Get the original sequence numbers of the sorted members.

List the three eldest employees by their hire dates based on the EMPLOYEE table.

ID NAME BIRTHDAY HIREDATE

1 Rebecca 1974-11-20 2005-03-11

2 Ashley 1980-07-19 2008-03-16

3 Rachel 1970-12-17 2010-12-01

4 Emily 1985-03-07 2006-08-15

5 Ashley 1975-05-13 2004-07-30

… … … …

55

1.15 Location: obtain records by their original sequence numbers after sorting

A5

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from EMPLOYEE order by HIREDATE") /Query EMPLOYEE table and sort it by hire date

3 =A2.psort(BIRTHDAY) /Get the original sequence numbers for sorted employee's birthdays

4 =A2(A3.to(3).sort())
/Select the three oldest employees in the EMPLOYEE table by the top
three birthdays

A.psort() function is used to get the original sequence numbers of a sorted members.

Note that the psort() function does not change the order of members in a sequence.

ID NAME BIRTHDAY HIREDATE

296 Olivia 1968-11-05 2006-11-01

440 Nicholas 1968-11-24 2008-07-01

444 Alexis 1968-11-12 2010-12-01

56

1.16 Location: Group members by positions repeatedly

Locate positions of members and then group members by their positions repeatedly.

Group records by label and count the frequencies of each label based on PostRecord table.

ID TITLE Author Label

1 Easy analysis of Excel 2 Excel,ETL,Import,Export

2 Early commute: Easy to pivot excel 3 Excel,Pivot,Python

3 Initial experience of SPL 1 Basics,Introduction

4 Talking about set and reference 4 Set,Reference,Dispersed,SQL

5 Early commute: Better weapon than Python 4 Python,Contrast,Install

… … … …

57

1.16 Location: Group members by positions overlapped

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from PostRecord") /Query PostRecord table

3 =A2.conj(Label.split(",")).id()
/Separate labels by commas and merge them into a sequence of all
unique labels

4 =A2.align@ar(A3.len(),A3.pos(Label.split(",")))
/pos() function locates all positions of a label, and align@r() function
groups post records by positions

5 =A4.new(A3(#):Label,~.count():Count).sort@z(Count)
/Count the number of posts per label and sort results in descending
order

SPL script is as follows, where A.pos() function is used to locate all positions of the same member:

Label Count

SPL 7

SQL 6

Basics 5

… …

A5

58

1.17 Location: check whether a record contains all specified members

Get records that contains all specified members.

Find countries whose official languages include both Chinese and English, based on the Language

table.

Country Language

China Chinese

UK English

Singapore English

Singapore Malay

Singapore Chinese

Singapore Tamil

Malaysia Malay

… …

59

1.17 Location: check whether a record contains all specified members

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Language") /Query Language table

3 =A2.group(Country) /Group by country

4 =A3.select(~.(Language).contain("Chinese","English"))
/use contain() function to check whether the current country's official
languages include both Chinese and English

5 =A4.(Country) /Get the list of eligible countries

SPL script is as follows. A.contain() function is used to determine whether a specified value is member of a

sequence :

A5 Member

Singapore

60

1.18 Location: determine whether a record exists by the primary key value

Find records in a subtable that don't point to the main table.
The Product table and Category table are related through CategoryID. Find which product
categories are not in the Category table.

Product

ID

Name

CategoryID

…

Category

ID

Name

Description

…

61

1.18 Location: determine whether a record exists by the primary key value

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Category").keys(ID) /Query Category table and set ID as the primary key

3 =A1.query("select * from Product") /Query Product table

4 =A3.select(A2.pfind(CategoryID)==0)

/Use the pfind function to get sequence numbers of category records whose
primary key values can't find counterparts in CategoryIDs - a return of 0
indicates that it does not exist among CategoryIDs, and then select product
records whose CategoryIDs do not exist in Category table

SPL script is as follows, where A.pfind() function is used to get the sequence numbers of primary key values:

A4 ID Name CategoryID …

12 German cheese …

26 Spun sugar 9 …

62

1.19 Location: inter-row calculation over Top N records

Get the original sequence numbers of Top N records and perform inter-row calculations over the records.

Based on the stock exchange table, calculate the growth rate of transaction amount for each of the three days with

the highest closing prices in 2019 at SSE Composite Index, find the increase rate of the transaction amount

compared with the previous day.

Date Open Close Amount

2019/12/31 3036.3858 3050.124 2.27E11

2019/12/30 2998.1689 3040.0239 2.67E11

2019/12/27 3006.8517 3005.0355 2.58E11

2019/12/26 2981.2485 3007.3546 1.96E11

2019/12/25 2980.4276 2981.8805 1.9E11

… … … …

63

1.19 Location: inter-row calculation over Top N records

A B

1 =file("000001.csv").import@ct() /Import data file

2 =A1.select(year(Date)==2019) /Select records of 2019

3 =A2.ptop(-3, Close)
/ptop() function gets the sequence numbers of records with the top
three closing prices. -3 indicates getting top three in descending order;
the positive means getting them in ascending order

4 =A3.run(~=A2(~).Amount/A2(~+1).Amount-1)
/Recursively divide the current trading amount by that of the previous
day to calculate the growth rate

We need to know sequence numbers of the three records with the highest closing prices, and then compare

each transaction amount with that of the previous trading day to get the result. SPL is as follows, where

ptop() function is used to get the sequence numbers of the three days with the highest closing prices:

VALUE

154

156

157

VALUE

-0.0278

-0.0139

0.0112

A3 A4

64

1.20 Select: find the record with the minimum value

Find the record corresponding to the minimum value of the specified field.

According to the Scores table, find the student ID with the lowest math score in class one.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

65

1.20 Select: find the record with the minimum value

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Scores where SUBJECT='Math'
and CLASS='Class one'")

/Query the math scores of class one

3 =A2.minp(SCORE) /minp() function gets the record with the lowest score

4 =A3.STUDENTID /Get the student ID

SPL is as follows, where minp() function is used to get the record with the minimum value and then the

student ID:

There may be more than one record with the minimum. To return all records, just use @a option in the function:

A B

3 =A2.minp@a(SCORE) /Get all records with the lowest score

4 =A3.(STUDENTID) /Return a sequence of student IDs

CLASS STUDENTID SUBJECT SCORE

Class one 5 Math 60

Class one 14 Math 60

A3 A4 STUDENTID

5

14

66

1.21 Select: find the record with the maximum value

Find the record corresponding to the maximum value.

According to the Olympic medal table, find the nation whose total result holds the first place for

the longest time.

Game Nation Gold Silver Copper

30 USA 46 29 29

30 China 38 27 23

30 UK 29 17 19

30 Russia 24 26 32

30 Korea 13 8 7

… … … … …

67

1.21 Select: find the record with the maximum value

SPL is as follows, where maxp() function is used to get the record corresponding to the maximum

value:

A B

1 =file("Olympic.csv").import@cqt() /Import the Olympic medal table data

2 =A1.sort@z(Game, 1000000*Gold+1000*Silver+Copper)
/Sort by game number and total score in
descending order

3 =A2.group@o1(Game)
/Get one for each game, i.e. the first because the
data is in order

4 =A3.group@o(Nation) /Group neighboring countries in the same order

5 =A4.maxp(~.len()) /Get the longest group

A5 Game Nation Gold Silver Copper

10 USA 41 32 30

9 USA 22 18 16

8 USA 45 27 27

7 USA 41 27 28

68

1.22 Select: search data by segment

Find records by segment according to the specified condition.

According to the Scores table, count the number of excellent, pass and fail for English.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

69

1.22 Select: search data by segment

SPL is as follows, where A.segp() function is used to get members in the sequence corresponding to a segment

sequence number:

A B

1 =connect("db").query("select * from Scores where SUBJECT='English'")
/Connect to the database and query English
scores

2 =create(Assessment,Score).record(["fail",0,"pass",60,"excellent",90]) /Create a base table of assessment and score

3 =A1.derive(A2.segp(Score,SCORE).Assessment:Assessment)
/Use segp function to return assessment
corresponding to a score

4 =A3.groups(Assessment;count(1):Count) /Group and count according to assessment

Assessment Count

excellent 6

fail 4

pass 18

A4

70

1.23 Select:Top N

Get records with the first/last N values of the specified field.

According to the Scores table, get the ID of the top two students for each subject in each class.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

71

1.23 Select:Top N

SPL is as follows, where A.top() function is used to get the first / last N members:

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Scores") /Query student scores

3 =A2.group(CLASS,SUBJECT;~.top(-2;SCORE):TOP2)
/Group by class and subject and get the records with the
top two scores in each group

4 =A3. conj(TOP2)
/Concatenate the top two records of all classes and
subjects

CLASS STUDENTID SUBJECT SCORE

Class one 4 English 96

Class one 9 English 93

Class one 13 Math 97

Class one 10 Math 97

… … … …

A4

72

1.24 Select: Find a record according to the primary key value

Find a record according to the primary key value.

According to the associated Course table and SelectCourse table, list the information of courses each

student selects, where each course holds a column.

Course SelectCourse

ID STUDENT_NAME COURSE

1 Rebecca 2,7

2 Ashley 1,8

3 Rachel 2,7,10

… … …

ID NAME TEACHERID

1 Environmental protection and … 5

2 Mental health of College Students 1

3 Computer language Matlab 8

… … …

ID STUDENT_NAME COURSE1 COURSE2 COURSE3 …

1 Rebecca Mental health of College Students Into Shakespeare …

2 Ashley Environmental protection and … Modern economics …

3 Rachel Mental health of College Students Into Shakespeare Music appreciation …

… … … … … …

73

A6

1.24 Select: Find a record according to the primary key value

A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Course").keys(ID) /Read Course table and set primary key as ID

3 =A1.query("select * from SelectCourse") /Read SelectCourse table

4 =A3.run(COURSE=COURSE.split@cp())
/Split the courses in the SelectCourse table by commas and assign them to
the course field

5 =A4.max(COURSE.len()) /Find the maximum number of selected courses

6
=create(ID,STUDENT_NAME,
${A5.("COURSE"+string(~)).concat@c()})

/Create an empty table having the maximum number of course columns

7
>A4.run(A6.record([ID,STUDENT_NAME]|COURSE.(A2.
find(~).Name)))

/Loop through SelectCourse table to find, concatenate and insert student
IDs, names and the course names obtained through find() function into A6's
table sequence

SPL is as follows, where find() function is used to find the record containing the current primary key value:

A B

7
>A4.run(A6.record([ID,STUDENT_NAME]|COURSE.(~.r
ow(A2).Name)))

/In A7, you can use row() function to find the records corresponding to the
courses since A.find(~) is equivalent to ~.row(A)

ID STUDENT_NAME COURSE1 COURSE2 COURSE3

1 Rebecca Mental health of College Students Into Shakespeare

2 Ashley Environmental protection and … Modern economics

3 Rachel Mental health of College Students Into Shakespeare Music appreciation

… … … … …

74

SPL
COOKBOOK

Complex Query

Chapter 2

75

2.1 Get records by checking whether a target value is contained in a specified set

Search for eligible records in a table by checking whether the target field value in a record is

included in a specified set.

Based on the employee table, calculate the average salary of each department in the first-tier

cities.

ID NAME CITY SALARY

1 Rebecca Tianjin 7000

2 Ashley Tianjin 11000

3 Rachel Shijiazhuang 9000

4 Emily Shenzhen 7000

5 Ashley Nanjing 16000

… … … …

76

2.1 Get records by checking whether a target value is contained in a specified set

The SQL query:

select

DEPT, avg(SALARY) as SALARY

from

Employee

where

STATE in ('Beijing', 'shanghai', 'Guangzhou', 'shenzhen')

group by

DEPT

77

2.1 Get records by checking whether a target value is contained in a specified set

A B

1 =connect("db").query("select * from Employee") /Connect to database and query Employee table

2 [Beijing, Shanghai, Guangzhou, Shenzhen] /Create a constant sequence of first-tier cities

3 =A1.select(A2.contain(CITY)) /Select records with cities included in A2's sequence

4 =A3.groups(DEPT; avg(SALARY):SALARY) /Group and calculate the average salary of each department

When there are no more than 9 constant items in the specified sequence, you can use A.contain()

function to perform a filter. SPL script is as follows:

A4 DEPT SALARY

Finance 7833.33

HR 7187.5

Marketing 7977.27

… …

78

2.2 Get records by checking whether a target value is contained in a specified set (the set is
relatively large)

Search for eligible records in a table by checking whether the target field value is included in

a specified set (here the set is relatively large).

Based on the sales table, calculate the monthly sales of key customers in 2014.

ID Customer SellerId Date Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

79

2.2 Get records by checking whether a target value is contained in a specified set (the set is
relatively large)

The SQL query:

select

month(Date) as Month, sum(Amount) as Amount

from

Sales

where

year(Date)=2014

and Customer in (

'sAVEA','QUICK','ERNSH','HUN','RATTC','HANAR','FOLKO','QUEEN','MEREP',

'WHITC','FRANK','KOENE'

)

group by Month

order by Month

80

2.2 Get records by checking whether a target value is contained in a specified set (the set is
relatively large)

A B

1 =connect("db").query("select * from Sales") /Connect to database and query Sales table

2
=["SAVEA","QUICK","ERNSH","HUN","RATTC","HANAR","FOLK
O","QUEEN,MEREP","WHITC","FRANK","KOENE"].sort()

/Create a constant sequence of key customers and
sort it

3 =A1.select(year(Date)==2014 && A2.contain@b(Customer)) /Select key customer records in 2014

4 =A3.groups(month(Date):Month; sum(Amount):Amount) /Group and calculate monthly sales

When there are 10 or more constant items, you can first sort the constant sequence and then use @b

option with A.contain() function to perform a faster binary search. SPL script is as follows:

A4 Month Amount

1 16947.3

2 27793.3

3 14602.7

… …

81

2.3 Get records by matched foreign key values

Between two associated tables, search for records according to the foreign key values

that can be matched.

According to the Course table and SelectCourse table, find how many students there

are in each class who have selected the"Matlab" course.

Course

ID

Subject

Score

SelectCourse

ID

Class

Name

82

2.3 Get records by matched foreign key values

The SQL query:

select

Class, count(1) as SelectCount

from

SelectCourse

where

ID in (select ID from Course where Name='Matlab')

group by Class

83

2.3 Get records by matched foreign key values

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Course") /Query Course table

3 =A1.query("select * from SelectCourse") /Query SelectCourse table

4 =A2.select(Name=="Matlab") /Select the specified course from the Course table

5 =A3.join@i(ID, A4:ID) /Use @i option in the join function to perform a join filter

6 =A5.groups(Class; count(1):SelectCount) /Group and count the students in each class who select the course

@i option is used with the A.join() function to delete the mismatched records. SPL script is as follows:

Class SelectCount

Class 1 3

Class 2 5

… …

A6

84

2.4 Get records by matched non-foreign-key values

Between two associated tables, search for records according to non-foreign-key

mapping.

According to the Score table and Student table, count the students in each class

who have at least one subject that is over 80.

Score

StudentID

Subject

Score

Student

ID

Class

Name

85

2.4 Get records by matched non-foreign-key values

The SQL query:

select

Class, count(1) as StudentCount

from

Student

where

ID in (select StudentID from Score where Score>80)

group by Class

86

2.4 Get records by matched non-foreign-key values

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Student") /Query Student table

3 =A1.query("select * from Score") /Query Score table

4 =A3.select(Score>80) /Select records where the score of at least one subject is over 80

5 =A4.id(StudentID) /Use id function to deduplicate by Student ID

6 =A2.join@i(ID, A5) /Use A.join@i() function to perform a join filter

7 =A6.groups(Class; count(1):StudentCount) /Group and count the number of eligible students in each class

Use a subquery to filter records and then deduplicate them by the joining field. Now it becomes a case of

primary key mapping. SPL script is as follows:

Class StudentCount

Class 1 9

Class 2 11

… …

A7

87

2.5 Speed up non-foreign-key mapping

Between two tables, speed up the search for records by non-foreign-key mapping.

According to the Sales table and Customer table, find the number of customers with

sales records in 2014 in each city.

Sales

ID

CustomerID

Date

Amount

Customer

ID

Name

City

…

88

2.5 Speed up non-foreign-key mapping

The SQL query:

select

City, count(1) as CustomerCount

from

Customer

where

ID in (select CustomerID from Sales where year(Date)=2014)

group by City

89

2.5 Speed up non-foreign-key mapping

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Customer") /Query Customer table

3
=A1.query("select * from Sales where
year(Date)=2014 order by CustomerID")

/Query sales records of 2014 and sort them by customer ID

4 =A3.groups@o(CustomerID)
/groups function works with @o option to deduplicate records since they are
ordered by the deduplication field

5 =A2.join@i(ID, A4:CustomerID) /Use A.join@i() function to perform a join filter

6 =A5.groups(City; count(1):CustomerCount) /Group and count the number of customers in each city

You can use @o option in groups function to speed up the operation if records are ordered by the

deduplication field. SPL script is as follows:

City CustomerCount

Dongying 6

Tangshan 7

… …

A6

90

2.6 Get records by matched multi-field foreign key values

Between two associated tables, search for records according to the multi-field foreign

key values that can be matched.

Based on the Score table and Student table, calculate the average score of each boy in

class one.

Score

StudentID

Class

Subject

Score

Student

ID

Class

Name

Gender

91

2.6 Get records by matched multi-field foreign key values

The SQL query:

select

StudentID, avg(Score) as Score

from

Score

where

exists (

select * from Student

where Class='Class 1' and Gender='Male'

and Student.Class=Score.Class and Student.ID=Score.StudentID

)

group by StudentID

92

2.6 Get records by matched multi-field foreign key values

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Score") /Query the Score table

3 =A1.query("select * from Student") /Query the Student table

4 =A3.select(Class=="Class 1" && Gender=="Male") /Select male students in class one

5 =A2.join@i(Class:StudentID, A4:Class:ID) /Use A.join@i() function to perform a join filter

6 =A5.groups(StudentID; avg(Score):Score) /Group and calculate the average score of each boy

Our logic is the same as IN subquery. In fact, the EXISTS statement can also be written with the IN statement . SPL

script is as follows:

StudentID Score

1 76

3 74

… …

A6

93

2.7 An example of self join simplification

Find desired data through complex self join in a table.

Based on the order table, get the sales amount of orders that spans more than one year's time.

ID NUMBER AMOUNT DELIVERDATE ARRIVALDATE

10814 1 408.0 2014/01/05 2014/04/18

10814 2 204.0 2014/02/21 2014/04/05

10814 3 102.0 2014/03/14 2014/04/06

10814 4 102.0 2014/04/09 2014/04/27

10814 5 102.0 2014/05/04 2014/07/04

10848 1 873.0 2014/01/06 2014/04/21

… … … … …

94

2.7 An example of self join simplification

The SQL query:

select

ID, sum(Amount) as Amount

from

Detail t1

where

exists (

select * from Detail t2

where datediff(t1.ARRIVALDATE, t2.DELIVERDATE)>365

and t1.ID=t2.ID and t1.NUMBER<>t2.NUMBER

)

group by ID

95

2.7 An example of self join simplification

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Detail") /Query order details table

3 =A2.group(ID) /Group by order ID

4
=A3.select(interval(~.min(DELIVERDATE),
~.max(ARRIVALDATE)) > 365)

/Select records of same order that spans more than 365 days

5 =A4.new(ID, ~.sum(AMOUNT):Amount) /Create a table sequence table and sum the amount of each order

SPL script is as follows:

ID Amount

10998 6800.0

11013 4560.0

11032 20615.0

… …

A5

96

2.8 Get records by mismatched foreign key values

Between two associated tables, search for records according to the foreign

key values that cannot find matches.

Based on the Sales table and Customer table, calculate the total sales of each

new customer in 2014.

Customer

ID

Name

City

…

Sales

ID

CustomerID

OrderDate

…

97

2.8 Get records by mismatched foreign key values

The SQL query:

select

CustomerID, sum(Amount) as Amount

from

Sales

where

CustomerID not in (select ID from Customer)

group by CustomerID

98

2.8 Get records by mismatched foreign key values

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Sales where
year(OrderDate)=2014")

/Query sales records in 2014

3 =A1.query("select * from Customer") /Query Customer table

4 =A2.join@d(CustomerID ,A3:ID)
/Use A. join@d() to select sales records whose customer IDs do not exist in the
Customer table

5 =A4.groups(CustomerID; sum(Amount):Amount) /Group and calculate the amount of each new customer

SPL script is as follows, where @d option works with A.join() function to get only the mismatched records:

CustomerID Amount

DOS 11830.1

HUN 57317.39

… …

A5

99

2.9 Get mismatched records

Between two associated tables, search for records where the joining field

values are mismatched.

According to the Score table and Student table, find students with scores

above 80 in all subjects.

Score

StudentID

Subject

Score

…

Student

ID

Class

Name

…

100

2.9 Get mismatched records

The SQL query:

select *

from Student

where

not exists (

select *

from Score

where

Score <= 80 and Score.StudentID = Student. ID

)

101

2.9 Get mismatched records

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Student") /Query Student table

3 =A1.query("select * from Score") /Query Score table

4 =A3.select(Score<=80) /Select records with scores no higher than 80

5 =A4.id(StudentID) /Deduplicate by Student ID

6 =A2.join@d(ID, A5) /Use A.join@d() to select mismatched records

We only need to find students with no score lower or equal to 80. SPL script is as follows:

ID Class Name

2 Class 1 Ashley

16 Class 2 Alexis

A6

102

2.10 An example of simplifying SQL double negation

According to a table, find eligible records in another table. The SQL double negation can

reduce the amount of computation.

Based on SelectCourse table, Course table and Student table, find the students who select all

courses.

Course

ID

Name

TeacherID

…

Student

ID

Name

Class

…

SelectCourse

ID

CourseID

StudentID

…

103

2.10 An example of simplifying SQL double negation

Only need to find students with no course unselected. The SQL query is as follows:

Select *

from Student

where not exists (

select * from Course

where not exists (

select * from SelectCourse

where Course.ID=SelectCourse.CourseID and

Student.ID=SelectCourse.StudentID

)

)

104

2.10 An example of simplifying SQL double negation

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Student") /Query Student table

3 =A1.query("select * from Course") /Query Course table

4 =A1.query("select * from SelectCourse") Query SelectCourse table

5
=A4.groups(StudentID;
icount(CourseID):CourseCount)

/Group SelectCourse table by student ID and count the courses selected by each
student

6 =A5.select(CourseCount==A3.len()) /Select the student IDs that all courses are selected

7 =A2.join@i(ID, A6:StudentID) /Use A.join@i() function to perform a join filter

SPL script is as follows:

ID Name Class

4 Emily Smith Class 1

A7

105

2.11 Get matching records

Between two associated tables, search for records based on the existence detection of

the match.

Based on Score table and Student table, find students whose score difference

between two subjects is more than 30 points.

Score

StudentID

Subject

Score

…

Student

ID

Class

Name

…

106

2.11 Get matching records

The SQL query:

Select * From Student

Where

ID = any (

select STUDENTID from Scores t1

where

SCORE-30 > any (

select SCORE from Scores t2

where t1.SUBJECT<>t2.SUBJECT and

t1.STUDENTID=t2.STUDENTID

)

)

107

2.11 Get matching records

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Student") /Query Student table

3 =A1.query("select * from Score") /Query Score table

4 =A3.group(StudentID) /Group Score table by student ID

5 =A4.select(~.max(Score)-~.min(Score)>30)
/Select students where the difference between the highest score and the lowest
score is over 30

6 =A5.id(StudentID) /Deduplicate by Student ID

7 =A2.join@i(ID,A6) /Use A.join@i() to perform a join filter

Just compare the highest and lowest scores of each student to see if the difference exceeds 30. SPL script is as

follows:

ID Name Class

4 Emily Smith Class 1

8 Megan Class 1

… … …

A7

108

2.12 Compare with all results of subquery

Filter records in a table by comparing with all results of a subquery.

Based on the employee table, find out which employees have higher salaries than all employees

in sales department.

ID NAME DEPT SALARY

1 Rebecca R&D 7000

2 Ashley Finance 11000

3 Rachel Sales 9000

4 Emily HR 7000

5 Ashley R&D 16000

… … … …

109

2.12 Compare with all results of subquery

The SQL query:

select

*

from

Employee

where

SALARY > all (select SALARY from Employee where DEPT='sales')

110

2.12 Compare with all results of subquery

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Employee") /Query Employee table

3 =A2.select(DEPT:"Sales").max(SALARY) /Select the max salary in sales department

4 =A2.select(SALARY>A3) /Select employees whose salaries are more than A3

ALL preceded by a greater than sign is equivalent to max operation; and ALL preceded by a less than

sign is equivalent to min operation. SPL script is as follows:

A4 ID NAME DEPT SALARY

5 Ashley R&D 16000

20 Alexis Administration 16000

22 Jacob R&D 18000

47 Elizabeth Marketing 17000

111

SPL
COOKBOOK

Top N

Chapter 3

112

3.1 Get the maximum value

Calculate the maximum value based on a data table.

Based on the scores table below, find the highest math score in class one.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

113

3.1 Get the maximum value

Similarly, you can use the min function to get the minimum value:

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Scores where SUBJECT='Math' and
CLASS='Class one'")

/Query the math scores of class one

3 =A2.max(SCORE) /Get the highest score

SPL script is as follows, where max function is used to get the maximum value:

A B

3 =A2.min(SCORE) Get the lowest score

114

3.1 Get the maximum value

When N is ±1, top@1(N, x) function returns a numeric value, which is the same with max & min

functions.

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Scores where SUBJECT='Math' and
CLASS='Class one'")

/Query the math scores of class one

3 =A2.top@1(-1, SCORE) /Get the highest score

You can also use top to get the highest score, as the following SPL script shows:

Value

97

115

3.2 Get the sequence number of the record with the maximum value and do inter-row
calculation

Get the sequence number of the record corresponding to the maximum value of a specified field

and perform inter-row calculations.

According to the stock trading table, calculate the growth rate of the day with the highest closing

price in 2019, compared with the previous day's closing price.

Date Opening price Closing price Amount

2019/12/4 2876.9079 2878.1157 136000000000

2019/12/3 2869.8822 2884.6988 135000000000

2019/12/2 2874.4484 2875.8072 139000000000

2019/11/29 2885.9744 2871.9813 140000000000

2019/11/28 2902.3644 2889.6934 123000000000

… … … …

116

3.2 Get the sequence number of the record with the maximum value and do inter-row
calculation

A B

1 =file("000001.csv").import@ct() /Import the file

2 =A1.select(YEAR(Date)==2019) /Select records of 2019

3 =A2.pmax('Closing price')
/Get the sequence number of the record with the
highest closing price

4 =A2.calc(A3, 'Closing price'/'Closing price'[-1]-1)
/Divide the closing price of the current day by that of
the previous day to calculate the growth rate

We need to know the sequence number of the record corresponding to the highest closing price,

and then compare it with the previous trading day to get the result.

SPL is as follows, where pmax function is used to get the sequence number of record with the

maximum value:

Similarly, you can use the pmin function to get the sequence number of the record corresponding to

the minimum value:

A B

3 =A2.pmin('Closing price')
/Get the sequence number of the record with the lowest
closing price

117

3.2 Get the sequence number of the record with the maximum value and do inter-row
calculation

The maximum value is not necessarily unique. If you want to return sequence numbers of all eligible

records, just use @a option with the pmax function:

A B

3 =A2.pmax@a('Closing price')
/Get the sequence numbers of all the records with
the highest closing price

If you want to get the records from back to front, just use the @z option with pmax function:

A B

3 =A2.pmax@z('Closing price')
/Get the sequence number of the record with the
highest closing price from back to front

118

3.3 Get another field value of the record with the maximum value

Get the record corresponding to the maximum value of a specified field in the table and then

obtain another field value of the record.

Based on the score table, find the student ID with the highest math score in class one.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

119

3.3 Get another field value of the record with the maximum value

Similarly, the minp function is used to get the record with the minimum value:

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Scores where SUBJECT='Math' and
CLASS='Class one'")

/Query the math scores of class one

3 =A2.maxp(SCORE) /Get the record with the highest score

4 =A3.STUDENTID /Get the student ID

SPL is as follows, where maxp function is used to get the record with the maximum value, and

then obtain the desired student ID:

A B

3 =A2.minp(SCORE) /Get the record with the lowest score

Both maxp function and minp function support @a and @z options.

120

3.4 Find top N field values

Find the first/last N values of the specified field in a table.

Based on the score table below, find the highest three math scores in class one.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

121

3.4 Find top N field values

The return value is a sequence of scores:

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Scores where SUBJECT='Math' and
CLASS='Class one'")

/Query the math scores of class one

3 =A2.top(-3, SCORE) /Get the highest 3 scores

The SPL is as follows, where top function is used to get done the task. The negative parameter N

means getting scores in descending order.

Members

97

97

90

122

3.4 Find top N field values

To get the four lowest math scores, just set parameter N as the positive 4 get values in ascending

order:

A B

3 =A2.top(4, SCORE) /Get the four lowest scores

Members

60

60

63

63

The return value is a sequence of scores:

123

3.5 Get the sequence numbers of records with top N values of a specified field

Get the sequence numbers of records with the first/last N values of a certain field in the table, and do

inter-row calculations.

According to the stock trading table, calculate the growth rate of trading amount compared with the

previous day for each of the three days with the highest closing prices in 2019.

Date Opening price Closing price Amount

2019/12/4 2876.9079 2878.1157 136000000000

2019/12/3 2869.8822 2884.6988 135000000000

2019/12/2 2874.4484 2875.8072 139000000000

2019/11/29 2885.9744 2871.9813 140000000000

2019/11/28 2902.3644 2889.6934 123000000000

… … … …

124

3.5 Get the sequence numbers of records with top N values of a specified field

A B

1 =file("000001.csv").import@ct() /Import data file

2 =A1.select(year(Date)==2019) /Select records of 2019

3 =A2.ptop(-3, 'Closing price')
/Get the sequence numbers of the records with top3
closing prices

4 =A3.(A2(~).Amount/A2(~+1).Amount-1)
/Recursively divide the trading amount of the current
day by that of the previous day to get the growth
rate

We need to know the sequence numbers of the records that corresponding to the highest three

closing prices, and then compare each with the previous trading day to get the result.

SPL is as follows, where the ptop function is used to get the sequence numbers of the records with

the highest three closing prices:

A3's result: VALUE

154

156

157

A4's result: VALUE

-0.02777777777777779

-0.01388888888888884

0.011235955056179803

125

3.5 Get the sequence numbers of records with top N values of a specified field

A B

1 =file("000001.csv").import@ct() /Import data file

2 =A1.select(YEAR(Date)==2019) /Select records of 2019

3 =A2.ptop(2, 'Closing price')
/Get the sequence numbers of records with two
lowest closing prices

To get the sequence numbers of records with two lowest closing prices.

By default, the ptop function returns a sequence of sequence numbers. Below is A3's result:

VALUE

224

225

126

3.5 Get the sequence numbers of records with top N values of a specified field

When N is ± 1, the ptop@1(n, x) function returns a numeric value, which is the same with the

pmax & pmin functions.

The ptop function can be used to find the sequence number of the record with the highest

closing price. The SPL script is as follows:

Value

154

A B

1 =file("000001.csv").import@ct() /Import data file

2 =A1.select(YEAR(Date)==2019) /Select records of 2019

3 =A2.ptop@1(-1, 'Closing price')
/Get the sequence number of the record with the
highest closing price

127

3.6 Get records with top N values in a specified field

Get the records corresponding to the first / last N values of a certain field in the table.

Based on the score table below, find records of the students whose math scores rank top three

in class one.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

128

3.6 Get records with top N values in a specified field

In SPL, top(n; x) function can get the records with the top N values. SPL script is as follows:

A3's result:

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Scores where SUBJECT='Math' and
CLASS='Class one'")

/Query the math scores of class one

3 =A2.top(-3; SCORE) /Get the records of top 3

CLASS STUDENTID SUBJECT SCORE

Class one 13 Math 97

Class one 10 Math 97

Class one 7 Math 90

129

3.7 Get other field values of the records with top N values of a specified field

Get other field values of the records corresponding to top N values of a specified field in a

table.

Based on the login log table, find a certain user's IP address at his/her first login.

ID USERID IP LOGINTIME

1 1 37.17.184.11 2012/05/09 09:01:10

2 3 61.134.201.1 2012/05/09 09:02:43

3 7 124.114.171.101 2012/05/09 09:03:18

4 2 183.202.48.25 2012/05/09 09:05:15

5 15 1.24.216.5 2012/05/09 09:05:55

… … … …

130

3.7 Get other field values of the records with top N values of a specified field

We can use Oracle's keep function to get this done:

select

min(IP) keep (dense_rank first order by LOGINTIME) IP

from

LoginLog

where

USERID=8

Execution result:

IP

223.223.118.1

131

3.7 Get other field values of the records with top N values of a specified field

In fact, we only need the record that the user logged in for the first time. In SPL, top(n; x) function

can get it in a clear way. SPL script is as follows:

A3's result:

A4's result:

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from LoginLog where USERID=8") /Query login records where the user ID is 8

3 =A2.top(1; LOGINTIME) /Get the record of the first login

4 =A3.IP /Get the IP field value

ID USERID IP LOGINTIME

8 8 223.223.118.1 2012/05/09 09:07:17

IP

223.223.118.1

132

3.8 Get top N records in each group after grouping

Group records in a table and get the records that corresponding to Top N values of the specified field

from each group.

Based on the score table below, for each subject, find the IDs of students whose scores rank top 2 in

each class.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

133

3.8 Get top N records in each group after grouping

SPL script is as follows:

A4's result:

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Scores") /Query Scores table

3 =A2.group(CLASS,SUBJECT;~.top(-2;SCORE):TOP2)
/Group by class and subject and get records with the
top two scores in each group

4 =A3.(TOP2).conj() /Concatenate all the top two records obtained in A3

CLASS STUDENTID SUBJECT SCORE

Class one 4 English 96

Class one 9 English 93

Class one 13 Math 97

Class one 10 Math 97

… … … …

134

3.8 Get top N records in each group after grouping

A3:group function group records by class and subject . Here getting top N is an aggregate

operation, which finds the first two from each subset.

A3's result:

A B

3 A3: =A2.group(CLASS,SUBJECT;~.top(-2;SCORE):TOP2) /Group by class and subject, then get
records with top two scores in each group

CLASS SUBJECT Members

Class one English [[Class one,4,English,96],[Class one,9,English,93]]

Class one Math [[Class one,13,Math,97],[Class one,10,Math,97]]

… … …

CLASS STUDENTID SUBJECT SCORE

Class one 13 Math 97

Class one 10 Math 97

135

3.9 Perform grouping & aggregation and get top N records in each group

EID NAME DEPT SALARY

1 Rebecca R&D 7000

2 Ashley Finance 11000

3 Rachel Sales 9000

4 Emily HR 7000

5 Ryan R&D 13000

… … … …

Perform grouping & aggregation and then get records that corresponding to the first / last N values of

the specified field from each group.

Based on the EMPLOYEE table, find employees whose salaries rank top three in each

department.

136

3.9 Perform grouping & aggregation and get top N records in each group

SPL script is as follows:

A4's result:

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from EMPLOYEE") /Query EMPLOYEE table

3 =A2.groups(DEPT; top(-3;SALARY):TopSalary)
/Group by department and get records with salaries
ranking top 3 in each group

4 =A3.(TopSalary).conj() /Concatenate eligible records of every department

A.groups() function calculates in a cumulative way and does not generate the intermediate grouping subsets.

EID NAME DEPT SALARY

20 Alexis Administration 16000

42 Michael Administration 12000

18 Jonathan Administration 7000

2 Ashley Finance 11000

32 Andrew Finance 11000

… … … …

137

SPL
COOKBOOK

Grouping & Aggregation

Chapter 4

138

4.1 Aggregation operation: SUM

Aggregate data in a table to get the sum.

Below is a table recording cities' GDP. Now calculate GDP per capita of municipalities, the

first-tier cities and the second-tier cities respectively.

ID City GDP Population

1 Shanghai 32679 2418

2 Beijing 30320 2171

3 Shenzhen 24691 1253

4 Guangzhou 23000 1450

5 Chongqing 20363 3372

… … … …

139

4.1 Aggregation operation: SUM

A5

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from GDP") /Query GDP table

3

[["Beijing","Shanghai","Tianjing","Chongqing"].pos(?)>0,["Beijing","Shang
hai","Guangzhou","Shenzhen"].pos(?)>0,["Chengdu","Hangzhou","Chong
qing","Wuhan","Xian","Suzhou","Tianjing","Nanjing","Changsha","Zhengz
hou","Dongguan","Qingdao","Shenyang","Ningbo","Kunming"].pos(?)>0]

/Enumerate municipalities,
the first-tier cities and the
second-tier cities

4 =A2.enum@r(A3,City)
/Enumeration grouping by
city

5 =A4.new(A3(#):Area,~.sum(GDP)/~.sum(Population)*10000:CapitaGDP)
/Calculate GDP per capita of
each group

SPL script is as follows, where sum() function is used to calculate sum.

Area CapitaGDP

["Beijing","Shanghai","Tianjing","Chongqing"].pos(?)>0 107345.03

["Beijing","Shanghai","Guangzhou","Shenzhen"].pos(?)>0 151796.49

["Chengdu","Hangzhou","Chongqing","Wuhan","Xian","Suzhou","Tianjing","Nanji

ng","Changsha","Zhengzhou","Dongguan","Qingdao","Shenyang","Ningbo","Ku

nming"].pos(?)>0

106040.57

140

4.2 Aggregation operation: MAX & MIN

Aggregate data in a table to calculate the maximum value or minimum value.

Merge the orders records of customer ANATR that have overlapping time periods.

OrderID Customer SellerId OrderDate FinishDate

10308 ANATR 7 2012/09/18 2012/10/16

10309 ANATR 3 2012/09/19 2012/10/17

10625 ANATR 3 2013/08/08 2013/09/05

10702 ANATR 1 2013/10/13 2013/11/24

10759 ANATR 3 2013/11/28 2013/12/26

… … … … …

141

A4A3

4.2 Aggregation operation: MAX & MIN

SPL script is as follows, where max() function is used to calculate the maximum value and min() function to

calculate the minimum value:

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Orders where
Customer='ANATR' order by OrderDate")

/Select orders records of customer ANATR and sort them by order date

3 =A2.group@i(OrderDate>max(FinishDate[,-1]))
/If the current order date is later than all previous finish dates, put the
record to a new group

4
=A3.new(Customer,~.min(OrderDate):OrderDate,~.m
ax(FinishDate):FinishDate)

/Make the earliest order date in each group the new order date and the
latest finish date the new finish date

Member

[[10308,ANATR,7,…], [10309,ANATR,3,…]]

[[10625,ANATR,3,…]]

[[10702,ANATR,1,…]]

[[10759,ANATR,3,…], [11079,ANATR,7,…]]

…

Customer OrderDate FinishDate

ANATR 2012/09/18 2012/10/17

ANATR 2013/08/08 2013/09/05

ANATR 2013/10/13 2013/11/24

ANATR 2013/11/28 2013/12/29

… … …

142

4.3 Aggregation operation: AVERAGE

We need to calculate the average value during a transposition. Below is part of the data in the

EMPLOYEE table:

ID NAME DEPT STATE SALARY

1 Rebecca R&D California 7000

2 Ashley Finance New York 11000

3 Rachel Sales New Mexico 9000

4 Emily HR Texas 7000

… … … … …

Calculate the average salary of each department in different states and display the result set in the following format:

DEPT California Florida New York Texas …

Finance 8000 10000 7500 8166.67 …

HR 10000 7000 5000 6500 …

… … … … … …

143

4.3 Aggregation operation:AVERAGE

SPL script is as follows, where avg() function is used to calculate the average value:

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from EMPLOYEE") /Query EMPLOYEE table

3 =A2.groups(DEPT,STATE;avg(SALARY):AvgSalary)
/Grouping & aggregation; avg function calculates the
average salary of each department in each region

4 =A3.pivot(DEPT;STATE, AvgSalary) /Transpose data according to the target table

A4

DEPT California Florida New York Texas …

Finance 8000 10000 7500 8166.67 …

HR 10000 7000 5000 6500 …

… … … … … …

144

4.4 Aggregation operation:COUNT

Group records and count numbers base on the values of a target field.

For each subject, find the number of students in class one who failed.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

145

4.4 Aggregation operation:COUNT

SPL script is as follows, where count() function is used to count the total number:

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Scores where CLASS='Class one'") /Query scores of students in class one

3 =A2.groups(SUBJECT; count(SCORE<60):FailCount)
/Grouping & aggregation, in which the count
function counts the number of students whose
scores are less than 60 for each subject

SUBJECT FailCount

English 2

Math 0

PE 2

A3

146

4.5 Aggregation operation: logical AND

Perform logical AND over a sequence of Boolean values.

According to a set of Excel files that records the types of terminals the students in a primary school used during

online learning, find whether all the students use mobile phones. Below are the questionnaire of each class and the

table:

ID STUDENT_NAME TERMINAL

1 Rebecca Moore Phone

2 Ashley Wilson Phone,PC,Pad

3 Rachel Johnson Phone,PC,Pad

4 Emily Smith Phone,Pad

5 Ashley Smith Phone,PC

6 Matthew Johnson Phone

7 Alexis Smith Phone,PC

8 Megan Wilson Phone,PC,Pad

… … …

147

4.5 Aggregation operation: logic AND

A B C
1 =directory@ps("D:/Primary School") /Recursively traverse directories to list all files

2 for A1 =file(A2).xlsimport@t() /Recursively Import the questionnaire Excel files of all classes

3
=B2.([TERMINAL,"Phone"].ifn().split@
c().pos("Phone") > 0)

/A null terminal value does not mean that the mobile is not
used; and ifn() function is used to ensure the judgement is true

4 =B3.cand() /cand() function judges whether all members of B3 are true

A.ifn() function gets the first non-null member; A.cand() function performs the logical AND operation

on members. SPL script is as follows:

B3

Member

true

true

true

…

A1

Member

D:\Primary School\Grade1\Class1\Questionnaire.xlsx

D:\Primary School\Grade1\Class2\Questionnaire.xlsx

D:\Primary School\Grade1\Class3\Questionnaire.xlsx

…

A4

Value

false

148

4.6 Aggregation operation:logic OR

Perform logical OR over a sequence of Boolean values.

Query whether customer RATTC ranked top three in terms of monthly sales amounts in 2014.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

149

4.6 Aggregation operation:logic OR

SPL script is as follows, where A.cor() function is used to perform logical OR operation on members:

A B

1 =connect("db").query("select * from sales") /Connect to database and query sales table

2 =A1.select(year(OrderDate)==2014) /Select sales records of 2014

3 =A2.group(month(OrderDate)) /Use group function to group records of 2014 by month

4 =A3.(~.groups(Customer; sum(Amount):Amount)) /Group records in each month by customer and calculate sales
amount for each group

5 =A4.new(~.top(-3; Amount):Top3) /Traverse records of every month to get the top 3 customers in
terms of sales amount

6 =A5.(Top3.(Customer).pos("RATTC")>0) /Judge whether the top 3 of each month include customer RATTC

7 =A6.cor() /Use cor() function to find whether a"true" exists in A6

Member

false

false

true

…

A6 Value

true

A7

150

4.7 Aggregation operation: Count distinct values

Perform count operation over distinct values in a table sequence.

Find the most suitable field in the following data file for the primary key.

PassengerId Survived Pclass Name Sex Age

1 0 3 "Braund, Mr. Owen Harris" male 22

2 1 1 "Cumings, Mrs. John Bradley" female 38

3 1 3 "Heikkinen, Miss. Laina" female 26

4 1 1 "Futrelle, Mrs. Jacques Heath" female 35

5 0 3 "Allen, Mr. William Henry" male 35

6 0 3 "Moran, Mr. James" male

7 0 1 "McCarthy, Mr. Timothy J" male 54

… … … … … …

151

4.7 Aggregation operation: Count distinct values

SPL script is as follows, in which the icount() function is to count distinct values:

A B C D

1 =file("titanic_train.csv").import@cqt() /Read the data file

2 =A1.fno().new(A1.fname(~):Name,A1.field(~).icount():DCount)
/Use the icount() function to count the number of distinct values in
each field

3 =A2.select(DCount==A1.len())
/Select the field where the number of distinct members is equivalent
with the count of all members

4 if (A3.len() > 1) =A3.select(like@c(Name,"*id*"))
/If there are more than one eligible field, select those whose names
contain string id

5 if (B4.len() > 0) >A3=B4 /If there is such a field, assign it to A3

6 =A3.minp(len(Name)).Name /Select the field that has the shortest name

Value

PassengerId

A6

152

4.8 Aggregation operation:MEDIAN

Group members and calculate the median for each group.

Based on the employee salary table, calculate the median salary of each department.

ID NAME DEPT SALARY

1 Rebecca R&D 7000

2 Ashley Finance 11000

3 Rachel Sales 9000

4 Emily HR 7000

5 Ashley R&D 16000

… … … …

153

4.8 Aggregation operation:MEDIAN

SPL script is as follows, where the median() function is used to get median:

A B

1 =connect("db").query("select * from employee") /Connect to database and query employee table

2 =A1.groups(DEPT;median(,SALARY):MedianSalary) /Group and aggregate by department to calculate the median salary of each
department

A3 DEPT MedianSalary

Administration 9500.0

Finance 7000.0

HR 7000

Marketing 7000

Production 6500

… …

154

4.9 Aggregation operation:RANKING

Group members and get the ranking for each group.

Find the ranking of the total score of the student in class one whose student ID is 8.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

155

4.9 Aggregation operation:RANKING

SPL script is as follows, where A.rank() function is used to calculate the ranking:

A B

1
=connect("db").query("select * from SCORES where
CLASS='Class one'")

/Connect the data source and query scores of class one

2 =A1.groups(STUDENTID;sum(SCORE):TotalScore) /Group and sum the total score of each student

3 =A2.select(STUDENTID==8).TotalScore /Get the total score of the student whose id is 8

4 =A2.rank@z(A3, TotalScore) /Use A.rank() function to calculate the ranking, where @z option ranks total
scores in descending order

A4 Value

13

156

4.10 Aggregation operation: An application scenario of RANKING

According to the test results of data scoring, calculate the AUC index of the data mining

model through the aggregate ranking operation.

ID Predicted_Y Original_Y

10 0.012388464367608093 0.0

11 0.01519899123978988 0.0

13 0.0007920238885061248 0.0

19 0.0012656367468159102 0.0

21 0.009460545997473379 0.0

… … …

157

4.10 Aggregation operation: An application scenario of RANKING

SPL script is as follows, where ranks() function is used to get the ranking:

A B

1 =file("p.csv").import@ct() /Import the file

2 =P=A1.pselect@a(Original_Y==1),M=P.len()
/Select all records whose original target is 1, set their row number as P and quantity as
M

3 =N=A1.len()-M /For records whose original target is not 1, set their quantity as N

4 =A1.(Predicted_Y).ranks@s()
/Use ranks() function to calculate the ranking of scoring values. @s option is used to
get the average of rankings that have equal values

5 =(A4(P).sum()-M*(1+M)/2)/(M*N) /Calculate AUC value according to the formula

Value

0.9055583178459794

A5

158

SPL
COOKBOOK

Alignment grouping

Chapter 5

159

5.1 Group by the specified order, each group keeps only one record

Find unreferenced records based on two associated tables.

According to the associated Course table and SelectCourse table, query which

courses are not selected according to the order of Course table.

Course

ID

Name

TeacherID

…

SelectCourse

ID

CourseID

StudentID

…

160

5.1 Group by the specified order, each group keeps only one record

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from SelectCourse") /Query SelectCourse table

3 =A1.query("select * from Course") /Query Course table

4 =A2.align(A3:ID,CourseID)
/Align SelectCourse table by Course.ID and select one
matching member for each group

5 =A3(A4.pos@a(null))
/Select records of unselected courses (value is null) in the
Course table

SPL script is as follows, where align(A:x, y) function is used to perform alignment grouping: A4's result:

Members

（null）

[13,2,7]

[7,3,41]

[45,4,28]

[3,5,52]

[1,6,59]

[10,7,13]

[8,8,49]

[6,9,57]

（null）

A5's result:

ID NAME TeacherID

1 Environmental protection and

sustainable development

5

10 Music appreciation 18

161

5.2 Group in specified order

Group and perform sum over all records in a table according to the order of a specified

field in another table.

Based on the associated EMPLOYEE table and DEPARTMENT table, calculate the number

of employees in each department by the department order in DEPARTMENT table.

EMPLOYEE

ID

NAME

DEPT

STATE

…

DEPARTMENT

NAME

MANAGER

…

162

5.2 Group in specified order

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from EMPLOYEE") /Query EMPLOYEE table

3 =A1.query("select * from DEPARTMENT") /Query DEPARTMENT table

4 =A2.align@a(A3:ID, DEPARTMENT)
/Align and group EMPLOYEE table by DEPARTMENT.ID;
@a option returns all matching records for each group

5 =A4.new(DEPT, ~.count():COUNT) /Count the number of employees in each department

SPL script is as follows, where align@a option is used:

163

5.2 Group in specified order

A4's result:

Members

[[18,Jonathan,Admin,...], [20,Alexis, Admin,...], …]

[[1,Rebecca,R&D,...],[5,Ashley,R&D,...],...]

[[3,Rachel,Sales,...],[6,Matthew,Sales,...],...]

…

ID NAME DEPT STATE

1 Rebecca R&D California

5 Ashley R&D Texas

10 Ryan R&D Pennsylvania

… … … …

A5's result:

DEPT COUNT

Admin 4

R&D 29

Sales 187

… …

164

5.3 Group in specified order and put unmatched records in a new group

Group records in a table according to the order of specified values in a field; put unmatched

records in a new group.

Based on the employee salary table, calculate the average salary of states according to the order

specified by the sequence [California, Texas, New York, Florida], and put the average salary of all

the other states in "Other".

ID NAME STATE SALARY

1 Rebecca California 7000

2 Ashley New York 11000

3 Rachel New Mexico 9000

4 Emily Texas 7000

5 Ashley Texas 16000

… … … …

165

5.3 Group in specified order and put unmatched records in a new group

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from EMPLOYEE") /Query EMPLOYEE table

3 [California,Texas,New York,Florida] /Create a sequence of states

4 =A2.align@an(A3,STATE)
/Align and group, EMPLOYEE table is grouped by the specified
states; @a option returns all matching records, and @n option
puts mismatched records in a new group

5
=A4.new(if (#>A3.len(),"Other",
STATE):STATE, ~.avg(SALARY):AvgSalary)

/Calculate the average salary of each group and generate a new
table sequence. Rename the last group "Other"; by default it is
the state name of the first record of this group

SPL script is as follows, where @an options are used with align() function:

166

5.3 Group in specified order and put unmatched records in a new group

A4's result:

Members

[[1,Rebecca,California,...], [6,Matthew,California,...], …]

[[4,Emily,Texas,...],[5,Ashley,Texas,...],...]

[[2,Ashley,New York,...],[12,Jessica,New York,...],...]

[[13,Daniel, Florida,...],[14,Alyssa,Florida,...],...]

[[3,Rachel,New Mexico,...],[7,Alexis,Illinois,...],...]

ID NAME STATE SALARY

3 Rachel New Mexico 9000

7 Alexis Illinois 9000

10 Ryan Pennsylvania 13000

19 Samantha Pennsylvania 10000

… … … …

A5's result:

STATE SALARY

California 7700.0

Texas 7592.59

New York 7677.77

Florida 7145.16

Other 7308.1

167

5.4 Group by sequence number, each group keeps only one record

Find unreferenced records based on two associated tables.

According to the associated Sales table and Customer table, list customers without

sales record in 2014 in the order of their IDs.

Customer

ID

Name

State

…

Sales

ID

CustomerID

OrderDate

…

168

5.4 Group by sequence number, each group keeps only one record

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Sales") /Query Sales table

3 =A1.query("select * from Customer") /Query Customer table

4 =A3.(ID) /Select customer IDs from Customer table

5 =A2.align(A4.len(), A4.pos(CustomerID)) /Align and group Sales table by sequence numbers of customers

6 =A3(A5.pos@a(null))
/Select records of customers without sales record (value is null)
from Customer table

SPL script is as follows, where align(n, y) function is used to perform alignment grouping:

A6 result:

ID Name State …

ALFKI CMA-CGM Texas …

CENTC Nedlloyd Florida …

169

5.5 Group by number

Group all records in a table by number and sum them up.

According to the Orders table, list in order the total number of orders per month in 2013.

ID CustomerID OrderDate Amount

10248 VINET 2012/07/04 428.0

10249 TOMSP 2012/07/05 1842.0

10250 HANAR 2012/07/08 1523.5

10251 VICTE 2012/07/08 624.95

10252 SUPRD 2012/07/09 3559.5

… … … …

170

5.5 Group by number

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Orders where
year(OrderDate)=2013")

/Query orders in 2013

3 =A2.align@a(12,month(OrderDate))
/Align and divide orders in 2013 into 12 groups
by the order month; @a option selects all
matching members for each group

4 =A3.new(#:Month,~.count():OrderCount) /List the total number of orders per month

SPL script is as follows, where @a option is used with align(n, y) function to select all

matching members in each group:

171

5.5 Group by number

A4's result:

Month OrderCount

1 33

2 29

3 30

4 31

5 32

6 30

7 33

8 33

9 37

10 38

11 34

12 48

A3's result:

Members

[[10400,EASTC,1],[10401,RATTC,1],…]

[[10433,PRINI,2],[10434,FOLCO,2],…]

[[10462,CONSH,3],[10463,SUPRD,3],…]

[[10492,BOTTM,4],[10493,LAMAI,4],…]

[[10523,SEVES,5],[10524,BERGS,5],…]

[[10555,SAVEA,6],[10556,SIMOB,6],…]

[[10585,WELLI,7],[10586,REGGC,7],…]

[[10618,MEREP,8],[10619,MEREP,8],…]

[[10651,WANDK,9],[10652,WANDK,9],…]

[[10688,VAFFE,10],[10689,BERGS,10],…]

[[10726,EASTC,11],[10727,REGGC,11],…]

[[10760,MAISD,12],[10761,RATTC,12],…]

172

5.6 Repeatedly grouped by sequence numbers

Align and group records by a calculated sequence number array, during which one record could

match more than one group.

Group records by label and count the frequencies of each label based on PostRecord table.

ID TITLE Author Label

1 Easy analysis of Excel 2 Excel,ETL,Import,Export

2 Early commute: Easy to pivot excel 3 Excel,Pivot,Python

3 Initial experience of SPL 1 Basics,Introduction

4 Talking about set and reference 4 Set,Reference,Dispersed,SQL

5 Early commute: Better weapon than Python 4 Python,Contrast,Install

… … … …

173

5.6 Repeatedly grouped by sequence numbers

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from PostRecord") /Query PostRecord table

3 =A2.conj(Label.split(",")).id()
/Separate labels by commas and merge them into a
sequence to obtain all distinct labels

4 =A2.align@ar(A3.len(),A3.pos(Label.split(",")))
/Use @r option with align function to align and group
posts by label positions repeatedly

5 =A4.new(A3(#):Label,~.count():Count).sort@z(Count)
/Count the posts under each label and arrange them
in descending order

SPL script is as follows, where @r option is used with align(n, y) function; each member may

match multiple groups:

A5's result:
Label Count

SPL 7

SQL 6

Basics 5

… …

174

5.7 Group by segments of field values

Group records by segments of values of the specified field and count records in each group.

Based on the salary table below, count the employees in three salary ranges respectively

(<8000, >=8000 and <12000, >12000).

ID NAME BIRTHDAY SALARY

1 Rebecca 1974-11-20 7000

2 Ashley 1980-07-19 11000

3 Rachel 1970-12-17 9000

4 Emily 1985-03-07 7000

5 Ashley 1975-05-13 16000

… … … …

175

5.7 Group by segments of field values

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from EMPLOYEE") /Query EMPLOYEE table

3 [0,8000,12000] /Define salary ranges

4 =A2.align@a(A3.len(),A3.pseg(SALARY)) /Use pseg() function to get the corresponding salary range

5 =A4.new(A3 (#):SALARY,~.count():COUNT) /Count the employees in each group

pseg(x) function is used in align(n,y) function to locate a segment of records. SPL script is as

follows:

A5's result:

SALARY COUNT

0 308

8000 153

12000 39

176

5.8 Group by segment according to expression result

Group records by segment according to the calculation result of expression and calculate

average of each group.

Calculate average salary for employees who have been with the company less than 10 years,

10 to 20 years and not less than 20 years respectively, based on the EMPLOYEE table.

ID NAME HIREDATE SALARY

1 Rebecca 2005-03-11 7000

2 Ashley 2008-03-16 11000

3 Rachel 2010-12-01 9000

4 Emily 2006-08-15 7000

5 Ashley 2004-07-30 16000

… … … …

177

5.8 Group by segment according to expression result

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from EMPLOYEE") /Query EMPLOYEE table

3 [0,10,20] /Define intervals of stay

4 =now() /Get the current date and time

5
=A2.align@a(A3.len(),A3.pseg(elapse@y(A4,-~),
HIREDATE))

/Use pseg() function to get the corresponding
interval for each hire date

6 =A5.new(A3(#):EntryYears,~.avg(SALARY):AvgSalary) /Calculate the average salary of each group

In the align(n,y) function, pseg(x) function is used to locate a segment of records. SPL script is

as follows:

A6 result:

EntryYears AvgSalary

0 6777.78

10 7445.53

20 6928.57

178

5.9 Group by enumerated conditions, records are not repeatedly grouped

Group records according to the enumerated conditional expression. One record will only be

placed in the first matching group.

Classify cities by population based on UrbanPopulation table.

ID City Population Province

1 Shanghai 12286274 Shanghai

2 Beijing 9931140 Beijing

3 Chongqing 7421420 Chongqing

4 Guangzhou 7240465 Guangdong

5 Hong Kong 7010000 Hong Kong Special Administrative Region

… … … …

179

5.9 Group by enumerated conditions, records are not repeatedly grouped

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from UrbanPopulation") /Query UrbanPopulation table

3 [?>2000000,?>1000000,?>500000,?<=500000] /Cities are classified by population range

4 =A2.enum(A3,Population)
/enumeration grouping according to the condition defined
by A3

SPL script is as follows, where enum function is used to implement enumeration grouping:

A4's result:

ID City Population Province

1 Shanghai 12286274 Shanghai

2 Beijing 9931140 Beijing

3 Chongqing 7421420 Chongqing

… … … …

Members

[[1,Shanghai,12286274,...], [2,Beijing, 9931140,...], …]

[[28,Changsha,1965282,...], [29,Nanchang,1900817,...], …]

[[69,Huainan,974026,...], [70,Haikou, 967336,...], …]

[]

180

5.10 Group by enumerated conditions, unmatched records are put in a new group

Group records according to the enumerated conditional expression, and put the

unmatched records into a new group.

Group employees by age conditions [less than 35 years old, less than 45 years old], and

calculate the average salary of each group based on EMPLOYEE table. Those who do not

meet the conditions are put into a new group.

ID NAME BIRTHDAY SALARY

1 Rebecca 1974-11-20 7000

2 Ashley 1980-07-19 11000

3 Rachel 1970-12-17 9000

4 Emily 1985-03-07 7000

5 Ashley 1975-05-13 16000

… … … …

181

5.10 Group by enumerated conditions, unmatched records are put in a new group

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from EMPLOYEE") /Query EMPLOYEE table

3 [?<35,?<45] /Divide employee ages into <35, <45

4 =A2.enum@n(A3, age(BIRTHDAY))
/First, calculate age according to the birthday; then group
records by the enumerated age intervals, during which the
unmatched ones are put in a new group

5
=A4.new(if (#>A3.len(),
"Other",A3(#)):AGE,~.avg(SALARY):AvgSalary)

/Calculate the average salary of each group, and set the
name of the last group as Other

SPL script is as follows, where @n option is used with enum() function to put unmatched members to

a new group:

A5's result:

AGE AvgSalary

?<35 7118.18

?<45 7448.16

Other 7395.06

182

5.11 Repeatedly group by enumerated conditions

Group and calculate records according to multiple specified sequences; records can be

repeatedly grouped.

Calculate the GDP per capita of municipalities, the first-tier cities and the second-tier cities

respectively based on GDP table; a member may be put into more than one group.

ID City GDP Population

1 Shanghai 32679 2418

2 Beijing 30320 2171

3 Shenzhen 24691 1253

4 Guangzhou 23000 1450

5 Chongqing 20363 3372

… … … …

183

5.11 Repeatedly group by enumerated conditions

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from GDP") /Query GDP table

3

[["Beijing","Shanghai","Tianjing","Chongqing"].pos(?)>0,["Beijing","Shang
hai","Guangzhou","Shenzhen"].pos(?)>0,["Chengdu","Hangzhou","Chong
qing","Wuhan","Xian","Suzhou","Tianjing","Nanjing","Changsha","Zhengz
hou","Dongguan","Qingdao","Shenyang","Ningbo","Kunming"].pos(?)>0]

/Enumerate municipalities,
the first-tier cities and the
second-tier cities

4 =A2.enum@r(A3,City)
/Group by enumerated
group of cities

5 =A4.new(A3(#):Area,~.sum(GDP)/~.sum(Population)*10000:CapitaGDP)
/Calculate GDP per capita of
each group

SPL script is as follows, where enum@r option is used to check whether all members match in

each group:

A5's result: Area CapitaGDP

["Beijing","Shanghai","Tianjing","Chongqing"].pos(?)>0 107345.03

["Beijing","Shanghai","Guangzhou","Shenzhen"].pos(?)>0 151796.49

["Chengdu","Hangzhou","Chongqing","Wuhan","Xian","Suzhou","Tianjing",

"Nanjing","Changsha","Zhengzhou","Dongguan","Qingdao","Shenyang","N

ingbo","Kunming"].pos(?)>0

106040.57

184

SPL
COOKBOOK

Subsets after grouping

Chapter 6

185

6.1 Inter-row calculation in subsets after grouping

Group records according to a field in a table, and perform inter-row calculation in each group.

Based on the user consumption table, for each user calculate the difference between the last expense and

the previous expense.

User consumption table

186

6.1 Inter-row calculation in subsets after grouping

SPL code

A

1 =db.query("SELECT * FROM USERPAY")

2 =A1.group@u(USERID)

3 =A2.(~.top(-2;PAYTIME))

4
=A3.new(~.USERID,if(~.count()<2,0,(~(1).PAYAMOUNT-

~(2).PAYAMOUNT)):BALANCE)

A2 : group by user, no sorting required

A3: Sort each group by pay time and get the

last two records

A4: Calculate the difference

SPL output

187

6.2 Group in the order of record and perform count

When the field value of the next record changes, put it to a new group, and perform count

after the grouping finishes.

Based on the following the seating plan table, count the maximum number of continuous

empty seats.

Seating plan for a movie

theater

188

6.2 Group in the order of record and perform count

SPL code

A

1 =file("D:/CINEMA.ctx").create().cursor().fetch()

2 =A1.group@o(ROW,EMPTY;~.count():CNT)

3 =A2.select(EMPTY=="YES")

4 =A3.max(CNT)

A2: Group records in the current order

A3: Filter away the taken seats

A4: Find the maximum number of continuous

empty seats

SPL output

189

6.3 Ordered conditional grouping

Loop through records in a table to calculate the conditional expression, and create a new

group if the result is true.

Based on the seating plan table, count the maximum number of continuous empty seats.

Seating plan for a movie

theater

190

6.3 Ordered conditional grouping

SPL output

SPL code

A

1 =file("D:/CINEMA.ctx").create().cursor().fetch()

2
=A1.group@i(ROW[-1]!=ROW||EMPTY[-

1]!=EMPTY;EMPTY,~.count():CNT)

3 =A2.select(EMPTY=="YES")

4 =A3.max(CNT)

A2: Group records in the current order by the

conditional expression

A3: Filter away the non-empty seats

A4: Find the maximum number of continuous

empty seats

191

6.4 Group by number

Group records according to the calculated numbers.

Remove records where the balance is 0 from the account balance table, and group other records by

the balance amount every interval of $500.

Account balance table

192

6.4 Group by sequence number

SPL code

A

1
=db.query("SELECT * FROM USERACCOUNT

WHERE AMOUNT > 0.000001")

2 =A1.group@n(int(AMOUNT/500)+1)

A1: Remove records with a balance of 0

A2: Divide records by balance amounts every

interval of $500

SPL output

Grouping by numbers can quickly locate the corresponding subset

directly through group numbers. For example, 3000 ~ 3500

corresponds to group 7.

193

6.5 Multilevel grouping & aggregation

Each group (a subset) is grouped again.

Based on the daily trading summary table, count the maximum number of days when the closing price of

each stock rises consecutively.

Daily trading

summary table

194

6.5 Multilevel grouping & aggregation

SPL code

SPL output

A

1 =file("D:/STOCK.ctx").create().cursor().fetch()

2 =A1.group@u(SCODE)

3 =A2.(~.sort(TDAY))

4
=A3.(~.group@i((EPRICE<=EPRICE[-

1]):GROUP;SCODE,(~.count()-1):COUNT))

5 =A4.(~.maxp(COUNT))

A2: Group data by stock code

A3: Sort data within a group by date

A4: Create a new group and count the days when

the closing price does not rise

A5 Get the subgroup in each group with the largest

count

195

6.6 Ordered grouping of big data

With a large amount of data, when the field value of the next record changes, put it to a new group and

perform an aggregation.

Below is a huge log file where logs are output in the order of date and time. The task is to find the day having the

most consecutive ERROR level.

Date Time Level IP …

2020/1/1 0:00:01 INFO 166.253.153.234 …

2020/1/1 0:00:02 INFO 99.72.133.239 …

2020/1/1 0:00:04 WARN 99.11.105.39 …

2020/1/1 0:00:05 INFO 117.69.80.195 …

2020/1/1 0:00:11 INFO 79.195.137.228 …

… … … … …

196

6.6 Ordered grouping of big data

A B

1 =file("ServerLog.txt").cursor@t() /Create cursor of the log file

2
=A1.group(Date,Level;count(~):Count) /cs.group() creates a new group whenever the

next date or log level is different

3 =A2.select(Level:"ERROR") /Get groups of ERROR level

4
=A3.top(1;ErrorCount) /Find the group that has the most consecutive

ERRORs

SPL script is as follows, where cs.group() function creates a new group whenever the next

value of the grouping field is different:

Date ErrorCount

2020/01/02 4

A4

197

6.7 Ordered conditional grouping of big data

With a large amount of data, loop through records to calculate the expression and create a

new group if the expression result is true.

Below is a huge log file where logs are output in the order of date and time. The task is to find the

day having the most consecutive ERROR level.

Date Time Level IP …

2020/1/1 0:00:01 INFO 166.253.153.234 …

2020/1/1 0:00:02 INFO 99.72.133.239 …

2020/1/1 0:00:04 WARN 99.11.105.39 …

2020/1/1 0:00:05 INFO 117.69.80.195 …

2020/1/1 0:00:11 INFO 79.195.137.228 …

… … … … …

198

6.7 Ordered conditional grouping of big data

A B

1 =file("ServerLog.txt").cursor@t() /Create cursor of the log file

2
=A1.group@i(Date[-1] !=Date||Level[-
1]!=Level;Date,Level,count(~):Count)

/cs.group() uses @i option to create a new
group whenever the condition is different

3 =A2.select(Level:"ERROR") /Get groups of ERROR level

4
=A3.top(1;ErrorCount) /Find the group that has the most consecutive

ERRORs

Date ErrorCount

2020/01/02 4

A4

SPL script is as follows, where cs.group() function works with @i option to create a new

group whenever the condition is changed:

199

SPL
COOKBOOK

Loop calculation

Chapter 7

200

7.1 Add new members to a sequence in loop

Loop through records to make judgment, adding new member at the end of a specified

sequence each time.

Compare how many rows of data are identical in two files with the same number of rows.

ID Predicted_Y Original_Y

10 0.012388464367608093 0.0

11 0.01519899123978988 0.0

13 0.0007920238885061248 0.0

19 0.0012656367468159102 0.0

21 0.009460545997473379 0.0

23 0.024176791871681664 0.0

… … …

201

7.1 Add new members to a sequence in loop

SPL script is as follows, where "|" is used to concatenate a sequence and single values together:

A B C

1 =file("p_old.csv").import@ct() /Read the first output file

2 =file("p_new.csv").import@ct() /Read the second output file

3 for A1.len() =cmp(A1(A3),A2(A3))
/Iteratively compare records at the same position from two
files

4 =@ | B3 /Combine the result of each comparison with B4's value

5 =B4.count(~==0) /Count how many rows are equal

Member

0

0

0

…

B4 Value

11302

A5

202

7.2 Loop assignment

Calculate members of a sequence circularly.

Based on the sales table, give the salespersons whose results rank top 10% in 2014 5% performance

awards.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

203

7.2 Loop assignment

SPL script is as follows, where A.run() function is used to assign the values of sequence members circularly.

A B

1 =connect("db").query("select * from sales") /Connect data source and read the sales table

2 =A1.select(year(OrderDate)==2014) /Select records of 2014

3 =A2.groups(SellerId;sum(Amount):Amount) /Use groups function to group records by salesperson and sum the total sales of
the current year

4 =A3.sort@z(Amount).to(A3.len()*0.1) /Sort in descending order by sales amount and get records of the top 10%

5 =A4.run(Amount*=1.05) /Loop through records of the top 10% to give each 5% performance awards

SellerId Amount

4 150433.185

3 127878.04

1 102756.759

8 87965.346

A5

204

7.3 Loop calculation: complex inter-row calculation

Group records and loop each group to perform an aggregate over members of the current group over the target

column while performing an inter-row calculation.

Part of the payment table is as follows:

ID customID name amount_payable due_date amount_paid pay_date

112101 C013 CA 12800 2014-02-21 12800 2014-12-19

112102 C013 CA 3500 2014-06-15 3500 2014-12-15

112103 C013 CA 2600 2015-03-21 6900 2015-10-17

According to the specified year (such as 2014), output the monthly payable amount. If there is no data of the

current month, the payable amount is the value of the previous month:

name 1 2 3 4 5 6 7 8 9 10 11 12

CA 12800 12800 12800 12800 3500 3500 3500 3500 3500 3500 3500

…

205

A3

7.3 Loop calculation: complex inter-row calculation

SPL script is as follows, where there is a loop calculation within the current member:

A B
1 $select * from Payment.txt where year(due_date)=2014 /Import payment data in 2014

2 =create(name,${12.concat@c()}) /Create a table sequence table according to the target
structure

3
=A1.group(customID).((m12=12.(null),~.(m12(month(due_d
ate))=amount_payable), m12.(~=ifn(~,~[-
1])),A2.record(name|m12)))

/Group by customer ID, loop through each group to perform
loop calculation over members in the current group and
calculate the payable amount per month. Then insert results to
A2's table sequence together with the customer names

name 1 2 3 4 5 6 7 8 9 10 11 12

CA 12800 12800 12800 12800 3500 3500 3500 3500 3500 3500 3500

NK 5800 5800 5800 9600 9600 9600 9600 3100 3100 3100

…

206

7.4 Loop calculation: maximum continuous rising days

Within a loop calculation, calculate the number of continuous rising of values in a specified column.

According to the records of SSE Composite Index, find the maximum number of days when the

closing prices increase continuously in 2019.

Date Open Close Amount

2019/12/31 3036.3858 3050.124 2.27E11

2019/12/30 2998.1689 3040.0239 2.67E11

2019/12/27 3006.8517 3005.0355 2.58E11

2019/12/26 2981.2485 3007.3546 1.96E11

2019/12/25 2980.4276 2981.8805 1.9E11

… … … …

207

7.4 Loop calculation: maximum continuous rising days

A B

1 =file("000001.csv").import@ct() /Import data file

2 =A1.select(year(Date)==2019).sort(Date) /Select records of 2019 and sort them by date

3 =n=0,A2.max(if(Close>Close[-1],n+=1,n=0))
/Loop through closing prices to compare the current closing price
with that of the previous day. If the current closing price is higher,
add 1 to the count, and finally select the maximum count value

SPL script is as follows, where ~ is used to represent the current member in the loop:

A3 Value

6

208

7.5 Loop calculation: nested loop

Use a nested loop function to calculate.

Here's the Hundred Fowls Problem. Now one cock is worth 5 qian, one hen 3 qian

and 3 chicks 1 qian. It is required to buy 100 fowls with 100 qian. In each case, find

the number of cocks, hens and chicks bought.

209

7.5 Loop calculation: nested loop

SPL script is as follows, where ~ is used to represent the current member in the loop:

A B

1 =to(100/5) /Possible number of cocks to be purchased

2 =to(100/3) /Possible number of hens to be purchased

3 =33.(~*3) /Possible number of chicks to be purchased

4 =create(Cock,Hen,Chick) /Create a table sequence to store the numbers of cocks, hens and
chicks

5
>A1.run(A2.run(A3.run(if(A1.~+A2.~+A3.~==100 &&
A1.~*5+A2.~*3+A3.~/3==100,A4.insert(0,A1.~,A2.~,A3.~)))))

/Loop cock, hen, chick respectively, and when the condition is met,
insert the result to A4's table sequence. The ~ symbol is used to
represent the current member of looping through the sequence

A5 Cock Hen Chick

4 18 78

8 11 81

12 4 84

210

7.6 Loop calculation: loop number

Search a text file by loop to the desired results, during which the loop number is used.

According to the keywords in text 1 to search text 2, and output according to the target format.

file1

like parks

went out

go out

file2

I like to go out because I like parks.

Ben does not go out much.

Shelly went out often but does not like parks.

Harry does not go out neither does he like parks.

Output

Q1. like parks

I

Shelly

Harry

Q2. went out

Shelly

Q3. go out

I

Ben

Harry

211

7.6 Loop calculation: loop number

SPL script is as follows, where the # symbol is used to represent the current sequence number in the loop :

A B

1 =file("file1.txt").read@n() /Read file1

2 =file("file2.txt").read@n() /Read file2

3
=A1.conj(("Q"+string(#)+".
"+~)|A2.select(pos(~,A1.~)).(~.words()(1)))

/Loop through each string in file 1 to find it in file2 and get the first word of each matching
string in file2. A2.select uses ~ to represent the current member of A2; A1.~ represents the
current member of A1. Precede each group of searching result with "Q+ sequence number of
A1's string +A1's current member", where the sequence number is got through #

A3 Member

Q1. like parks

I

Shelly

Harry

Q2. went out

Shelly

Q3. go out

I

Ben

Harry

212

7.7 Loop calculation:calculate adjacent data by position during the loop calculation

Calculate the average of values in an deviated interval by position during the loop calculation.

According to the trading table of China Merchants Bank, list the 20-day average closing price for each day

from January 1 to 10, 2020.

Date Open Close Amount

2019/12/31 3036.3858 3050.124 2.27E11

2019/12/30 2998.1689 3040.0239 2.67E11

2019/12/27 3006.8517 3005.0355 2.58E11

2019/12/26 2981.2485 3007.3546 1.96E11

2019/12/25 2980.4276 2981.8805 1.9E11

… … … …

213

7.7 Loop calculation:calculate adjacent data by position during the loop calculation

A B

1 =connect("db") /Connect data source

2
=A1.query("select Date, Close from Stock where
Code='600036' order by Date")

/Select records of China Merchants Bank and sort them by date

3
=A2.pselect@a(Date>=date("2020/01/01") &&
Date<=date("2020/01/10"))

/Use pselect() function to get sequence numbers of the records from January 1 to 10,
2020

4
=A2(A3).derive(A2.calc(A3(#),avg(Close[-
19:0])):ma20)

/calc() function iteratively calculates and returns the 20-day average for each the first
ten days. Expression Close[- 19:0] gets the closing prices from 19 days before to the
current day

SPL script is as follows, where A.calc() function calculates values and returns result according to the specified positions;

[a:b] is used to access members in loop:

A3 Member

4311

4312

4313

4314

4315

4316

4317

A4 Date Close ma20

2020/01/02 38.88 37.35

2020/01/03 39.4 37.50

2020/01/06 39.24 37.64

2020/01/07 39.15 37.79

2020/01/08 38.41 37.90

2020/01/09 38.9 38.03

2020/01/10 39.04 38.16

214

7.8 Loop calculation: iterative accumulation

Iteratively accumulate during looping, and perform a filter over the accumulated values.

According to the sales table, calculate the number of days needed to achieve 20 orders per

month in 2014.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

215

7.8 Loop calculation: iterative accumulation

SPL script is as follows, where seq() function is used to generate sequence numbers:

A B

1 =connect("db").query("select * from sales") /Connect the data source and read the sales table

2 =A1.select(year(OrderDate)==2014) /Select records of 2014

3 =A2.sort(OrderDate) /Sort by order date

4 =A3.select(seq(month(OrderDate))==20) /Use seq() function to get sequence numbers of orders per month
and select the record with sequence number being 20 in each month

5 =A4.new(month(OrderDate):Month,day(OrderDate):Day) /List the number of days needed to reach 20 sales per month

Month Day

1 20

2 20

3 20

4 18

… …

A5

216

7.9 Loop calculation:group and calculate ranking

Iteratively calculate ranking in each group.

According to the employee income table, get the income ranking of each employee in the department.

ID NAME DEPT SALARY

1 Rebecca R&D 7000

2 Ashley Finance 11000

3 Rachel Sales 9000

4 Emily HR 7000

5 Ashley R&D 16000

… … … …

217

7.9 Loop calculation:group and calculate ranking

SPL script is as follows, where rank() function is used to number members with a same field value:

A B

1
=connect("db") .query("select * from Employee
order by DEPT, SALARY DESC")

/Connect data source, read employee table and sort it by department and salary

2 =A1.derive(rank(SALARY;DEPT):DeptRank) /Use rank() function to number members with ordered department and salary and get
ranking in each department

A2 ID NAME DEPT SALARY DeptRank

2 Ashley Finance 11000 1

32 Andrew Finance 11000 1

230 Hannah Finance 10000 3

24 Chloe Finance 10000 3

… … … … …

218

7.10 Loop calculation: calculate dense ranking in each group

Iteratively calculate the dense ranking for each group.

According to the score table, find the rankings of students with ID 8 in each subject in class one.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

219

7.10 Loop calculation: calculate dense ranking in each group

The ranki() function is used to number members with a same field value. The difference between ranki function and

rank function is that the former returns consecutive numbers, which is similar to DENSE_RANK. SPL script is as

follows:

A B

1
=connect("db") .query("select * from SCORES where
CLASS='Class one' order by SUBJECT, SCORE DESC")

/Connect data source, read scores table and sort it by subject and score

2 =A1.derive(ranki(SCORE;SUBJECT):Rank) /use ranki () function to number records with ordered subjects and
scores, and calculate the dense ranking for each subject

3 =A2.select(STUDENTID==8) /Select records of students with ID 8

4 =create(${A3.(SUBJECT).concat@c()}).record(A3.(Rank)) /Get the dense ranking of each subject for each student in A3

A4 English Math PE

10 4 14

220

7.11 Loop calculation: iterative sum

Calculate the result of iterative sum by loop.

According to the SSE Composite Index table, calculate the annual cumulative transaction amount of

each trading day in 2019.

Date Open Close Amount

2019/12/31 3036.3858 3050.124 2.27E11

2019/12/30 2998.1689 3040.0239 2.67E11

2019/12/27 3006.8517 3005.0355 2.58E11

2019/12/26 2981.2485 3007.3546 1.96E11

2019/12/25 2980.4276 2981.8805 1.9E11

… … … …

221

7.11 Loop calculation: iterative sum

A B

1 =file("000001.csv").import@ct() /Import data file

2 =A1.select(year(Date)==2019).sort(Date) /Select records of 2019 and sort them by date

3 =A2.derive(cum(Amount):CUM)
/Use cum() function to calculate the cumulative transaction
amount

SPL script is as follows, where cum() function is used to calculate the cumulative transaction amount:

A3 Date Open Close Amount CUM

2019/01/02 2497.8805 2465.291 9.759E10 9.759E10

2019/01/03 2461.7829 2464.3628 1.07E11 2.046E11

2019/01/04 2446.0193 2514.8682 1.39E11 3.436E11

2019/01/07 2528.6987 2533.0887 1.46E11 4.896E11

2019/01/08 2530.3001 2526.4622 1.23E11 6.126E11

… … … … …

222

7.12 Loop calculation: custom iterative calculation

Perform an iteration calculation by defining the expression and the termination condition for

the iterative process.

According to the sales table, find the day when the sales target of $150000 is achieved in

the first quarter of 2014.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

223

7.12 Loop calculation: custom iterative calculation

SPL script is as follows, where A.iterate() function is used to perform iterative calculation over members:

A B

1 =connect("db").query("select * from sales") /Connect the data source and read the sales table

2 =A1.select(year(OrderDate)==2014) /Select records of 2014

3
=A2.iterate((@+=Amount,
~~=OrderDate),0,@>150000)

/iterate() function performs an iterative calculation with an initial value of 0. Add up the
sales amounts to the current cell value until the total is over 150000. The function
returns an order date

Value

2014/3/25

A3

224

SPL
COOKBOOK

Join query over multiple tables

Chapter 8

225

8.1 Perform filtering through multi-level association

Employee

ID

Name

Nation

Dept

Department

ID

Name

Manager

Perform a multi-level associative query between two tables and then filtering.

Based on the associated Employee table and Department table, find which American employees have a

Chinese manager.

226

8.1 Perform filtering through multi-level association

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Employee") /Query Employee table

3 =A1.query("select * from Department") /Query Department table

4 =A3.switch(Manager, A2:ID)
/Use switch function to switch the Manager filed in Department table to
the corresponding records in Employee table

5 =A2.switch(Dept, A4:ID)
/Use switch function to switch the Dept field in Employee table to the
corresponding records in Department table

6
=A5.select(Nation=="American" &&
Dept.Manager.Nation=="Chinese")

/Select employees whose nationality is America and whose manager's
nationality is China

SPL script is as follows，where A.switch() function switches the foreign key field values to the

corresponding records in the foreign key table:

A6 ID Name Nation Dept

11 Simon American 2

103 Rudy American 2

… … … …

227

8.2 Switch foreign key field values to the corresponding records

Merge and calculate the associated data in two tables. The two tables may not match exactly.

Based on the associated Employee table and PostAllowance table, calculate the total income of

employees.

Employee

ID

Name

Salary

Post

Post

Post

Allowance

228

8.2 Switch foreign key field value to the corresponding record

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Employee") /Query Employee table

3 =A1.query("select * from PostAllowance") /Query PostAllowance table

4 =A2.switch(Post, A3:Post)
/Use switch function to switch the post field in employee table
to the corresponding records, and set to null if the
corresponding record does not exist

5 =A4.new(ID,Name,Salary+Post.Allowance:Salary) /Create a table sequence and calculate the total income

SPL script is as follows, where A.switch() function switches the foreign key field values to the

corresponding records in the foreign key table. If the corresponding record does not exist, set it as null:

A5 ID Name Salary

1 Rebecca 8000

2 Ashley 12000

… … …

229

8.3 Get records by matched foreign key values

Sales

ID

CustomerID

Date

Amount

Customer

ID

Name

City

…

Between two associated tables, search for records according to the foreign key values that can

be matched and then perform grouping and aggregation.

According to the associated sales table and customer table, find the total sales amount of each

customer in Beijing in 2014.

230

8.3 Get records by matched foreign key values

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Sales where year(Date)=2014") /Query the data of sales table in 2014

3 =A1.query("select * from Customer where City='Beijing'") /Query customers in Beijing

4 =A2.switch@i(CustomerID, A3:ID)
/Use @i option with switch function to keep only the records of
customers in Beijing

5
=A4.groups(CustomerID.Name:Name;
sum(Amount):Amount).sort@z(Amount)

/Group and sum each customer's sales amount, and sort them in
descending order

@i option is used with the A.switch() function to delete the mismatched records. SPL script is as follows:

A5 Name Amount

SAVEA 130672.64

HUN 23959.05

… …

231

8.4 Get records by mismatched foreign key values

Between two associated tables, search for records according to the foreign key values that cannot

find matches.

Query the new customers in 2014 based on the associated Sales table and Customer table.

Customer

ID

Name

City

…

Sales

ID

CustomerID

OrderDate

…

232

8.4 Get records by mismatched foreign key values

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Sales where
year(OrderDate)=2014")

/Query sales records in 2014

3 =A1.query("select * from Customer") /Query customer table

4 =A2.switch@d(CustomerID ,A3:ID)
/use switch@d() to select the records from the sales table that the customer ID
does not exist in the customer table

SPL script is as follows, where @d option works with A.switch() function to get only the mismatched records

(the foreign key field will not be set to null in this case):

ID CustomerID OrderDate …

10439 MEREP 2014/02/07 …

10504 WHITC 2014/04/11 …

… … … …

A4

233

8.5 Join query over two tables

Between two associated tables, filter records according to the join condition and do calculation.

According to the Course table and SelectCourse table, find how many students there are who have

selected the "Matlab" course.

Course

ID

Name

Teacher

SelectCourse

ID

CourseID

StudentID

234

8.5 Join query over two tables

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Course") /Query Course table

3 =A1.query("select * from SelectCourse") /Query SelectCourse table

4 =A2.select(Name=="Matlab") /Select the specified course from the Course table

5 =A3.join@i(CourseID,A4:ID).count()
/Use @i option in the join function to perform a join filter，and then
count

@i option is used with the A.join() function to delete the mismatched records. SPL script is as follows:

Value

5

A5

235

8.6 Perform a multi-field join and conditional filtering over two tables

Between two associated tables, filter records according to the multi-field join condition, and then group &

aggregate data.

Based on the associated Score table and Student table, calculate the total score of each student in class one.

Score

ID

Class

Subject

Score

Student

ID

Class

Name

236

8.6 Perform a multi-field join and conditional filtering over two tables

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Score") /Query the Score table

3 =A1.query("select * from Student") /Query the Student table

4 =A2.join@i(ID:"Class one", A3:ID:Class)
/Use A.join@i() function to filter with ID when performing a multi-field join by
ID and Class

5 =A4.groups(ID; sum(Score):TotalScore) /Group and calculate the total score of each student

@i option is used with the A.join() function to delete the mismatched records. During the join, specify the class

as a constant condition (Class one) to do the join filter. SPL script is as follows:

ID TotalScore

1 230

2 258

3 228

… …

A5

237

8.7 Join query over multiple tables

Among three associated tables, filter records according to the join condition and do

calculation.

Based on associated Order table, Detail table and Payment table, query which orders have

not been fully paid.

Order

ID

CustomerID

EmployeeID

Date

Payment

ID

Date

Amount

…

Detail

ID

ProductID

Amount

…

238

8.7 Join query over multiple tables

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Order") /Query Order table

3 =A1.query("select * from Detail") /Query Detail table

4 =A1.query("select * from Payment") /Query Payment table

5 =A3.group(ID) /Group Detail table by order ID

6 =A4.group(ID) /Group Payment table by order ID

7 =join(A2:Order,ID; A5:Detail,ID; A6:Payment,ID)
/Use join function to join Order table, Detail table and Payment table by
order ID

8
=A7.new(Order.ID:ID,Detail.sum(Amount):Amoun
t,Payment.sum(Amount):Pay)

/Create a table sequence, get the sum of each order and payment

9 =A8.select(Pay<Amount) /Select the records whose payment amount is less than the order amount

join() function is used to perform a join. SPL script is as follows:

ID Amount Pay

AROUT 55492.0 35980

BERGS 3398.55 1080

… … …

A9

239

8.8 Join two tables of the same order by merging

Join two tables of the same order by merging, then group & aggregate the result.

Based on the associated order table and detail table, calculate the sales amount of each

customer in 2014.

Order

ID

CustomerID

EmployeeID

Date

Detail

ID

ProductID

Amount

240

8.8 Join two tables of the same order by merging

A B

1 =connect("db") /Connect to database

2
=A1.query("select * from Order where
year(Date)=2014 order by ID")

/Query orders in 2014, and sort them by order ID

3 =A1.query("select * from Detail order by ID") /Query Detail table and sort it by order ID

4 =join@m(A2:Order,ID;A3:Detail,ID) /Use join@m function to merge Order table and Detail table in order

5
=A4.groups(Order.CustomerID:CustomerID;
sum(Detail.Amount):Amount)

/Group and aggregate the sales amount of each customer

@m option is used with join() function to perform the order-based merge. SPL script is as follows:

CustomerID Amount

ALFKI 14848.0

ANTON 4041.0

… …

A5

241

8.9 Join big data tables of the same order by merging

There are multiple associated tables that are ordered, including big data tables. Perform an order-based merge and

filter records.

Based on the associated Order table, Detail table and Customer table, find the customers whose total sales amount

exceeds 10000. The Detail and Order tables have large amounts of data that cannot be fully loaded into the memory.

Order

ID

CustomerID

EmployeeID

Date

Detail

ID

ProductID

Amount

Customer

ID

Name

City

…

242

8.9 Join big data tables of the same order by merging

A B

1 =connect("db") /Connect to database

2 =A1.cursor("select * from Order order by ID") /Create a cursor for Order table

3 =A1.cursor("select * from Detail order by ID") /Create a cursor for Detail table

4 =A1.query("select * from Customer") /Query Customer table

5 =A2.switch@i(CustomerID,A4:ID)
/Use switch@i function to switch CustomerID to the corresponding
records in Order table and delete non-matched records

6 =joinx(A5:Order,ID;A3:Detail,ID)
/Use joinx function to merge the cursors of Order table and Detail
table in order

7
=A6.groups(Order.CustomerID.Name;
sum(Detail.Amount):Amount).select(Amount>10000)

/Group and aggregate the sales amount of each customer, and select
records with sales amount more than 10000

joinx() function is used here to perform order-based merge. SPL script is as follows:

Name Amount

ALFKI 14848.0

AROUT 55492.0

… …

A7

243

8.10 Perform a left join by multi-field primary key of dimension table

Perform a left join over associated tables by multi-field primary key to filter records.

Based on the associated order table, details and payment table, find the products with payment record in

2014 and single order amount exceeding 500.

Product

ID

Name

Desc

Category

Detail

ID

Number

ProductID

Amount

Payment

ID

OrderID

OrderNumber

Date

Amount

244

8.10 Perform a left join by multi-field primary key of dimension table

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Detail") /Query Detail table

3 =A1.query("select * from Payment") /Query Payment table

4 =A1.query("select * from Product") /Query Product table

5 =A2.switch@i(ProductID,A4:ID)
/Use switch@i function to switch ProductID in Detail table to the
corresponding record

6 =A3.join(OrderID:OrderNumber,A5:ID:Number,~:Detail) /Use A.join function to join Detail table and Payment table

7 =A6.select(year(Date)==2014 && Detail.Amount>500) /Select the payment records in 2014 with order amount over 500

8
=A7.new(ID,Date,Detail.Product.Name:Name,Detail.Amo
unt:Amount)

/Use selected results to create a table sequence

A.join() function is used here to perform a left join by multi-field primary key. SPL script is as follows:

ID Date Name Amount

10979 2014/03/26 Soda water 1317

11011 2014/04/09 Espresso 530

… … … …

A8

245

8.11 Perform a left join between two tables

Perform cross-table calculation by left join of two tables.

Based on the associated Student table and Evaluation table, find the score of each student. The basic

score of each student is 70, and then adjusted according to the evaluation score.

Evaluation

ID

StudentID

Score

…

Student

ID

Name

Class

…

246

8.11 Perform a left join between two tables

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Students") /Query Students table

3 =A1.query("select * from Evaluation") /Query Evaluation table

4 =A3.group(StudentID) /Group Evaluation table by StudentID

5 =join@1(A2:Students,ID;A4:Evaluation,StudentID)
/Use join@1() function to perform a left join between Students table and
grouped Evaluation table

6
=A5.new(Students.ID:ID,Students.Name:Name,70+
Evaluation.sum(Score):Score)

/Create a table sequence, and calculate the total score of each student
(70+Evaluation score)

@1 option is used with join() function to perform a left join. Based on the left table sequence, null is used if

there is no matching records in the right table. SPL script is as follows:

ID Name Score

1 Ashley 85

2 Rachel 65

3 Emily 70

… … …

A6

247

8.12 Perform a full join between two tables

Perform cross-table calculation by full join of two tables.

Based on the associated sales table and product table, find which products are sold in each month

of 2014.

Product

ID

Name

Desc

…

Sales

ID

CustomerID

ProductID

Date

248

8.12 Perform a full join between two tables

A B

1 =connect("db") /Connect to database

2
=A1.query("select ProductID, month(Date) as Month from Sales
where year(Date)=2014")

/Query the sales records of 2014

3 =A1.query("select * from Product") /Query Product table

4 =A2.switch(ProductID ,A3:ID)
/Use switch function to switch ProductID to the corresponding
records

5 =A4.group(Month) /Group and sort by month

6
=A5.(~.group@1(ProductID).new(ProductID.Name:Product,
count(~):Count))

/Deduplicate by product for each month, and get the product
name field

7 =A6.("A6("+string(#)+"):"+string(#)+",Product").concat(";") /Concatenate the parameter string of join@f() function

8 =join@f(${A7}) /Use join@f() function to perform a full join over 12 months' data

SPL script is as follows, where @f option is used with join() function to perform a full join:

A8

1 2 3 4 5 6 7 8 9 10 11 12

(null) [Cheese,3] (null) (null) (null) (null) (null) (null) (null) [Cheese,6] (null) (null)

(null) [Coffee,7] (null) [Coffee,6] [Coffee,9] (null) [Coffee,9] (null) (null) (null) (null) [Coffee,8]

[Milk,3] (null) [Milk,5] [Milk,7] (null) [Milk,6] [Milk,8] [Milk,3] (null) [Milk,6] [Milk,4] (null)

… … … … … … … … … … … …

249

8.13 Cartesian product with filter condition

Get the Cartesian product of two associated tables and then perform filtering.

According to the Sandwich table and Ingredient table, find which two sandwiches use the most

similar ingredients.

ID Name Price

1 BLT 5.5

2 Reuben 7.0

3 Grilled Cheese 3.75

Sandwich

ID Ingredient

1 bacon

1 lettuce

1 tomato

… …

Ingredient

250

8.13 Cartesian product with filter condition

A B

1 =connect("db") /Connect to database

2
=A1.query("select i.ID ID, i.Ingredient Ingredient, s.Name Name
from Sandwich s, Ingredient i where s.ID=i.ID order by ID")

/Query Sandwich table and Ingredient table

3 =A2.group@o(ID;Name,~.(Ingredient):Collection)
Use group@o() to group by ID, and store the ingredients of
each sandwich to Collection field

4 =xjoin(A3:A;A3:B,A.ID<ID)
/Use xjoin function to calculate cross product, and select the
combinations that IDs are different

5
=A4.new((A.Collection ^ B.Collection).len():Count,
A.Name:Name1, B.Name:Name2).sort@z(Count)

/Calculate the number of duplicate ingredients in the two
formulations and arrange them in descending order

xjoin() function is used here to calculate the cross product. The SPL cross product result is composed of records of two

tables, rather than simply expanding all fields. SPL script is as follows:

Count Name1 Name2

1 Reuben Grilled Cheese

0 BLT Reuben

0 BLT Grilled Cheese

A5

251

8.14 Use Cartesian product to calculate matrix multiplication

Use Cartesian product to calculate matrix multiplication.

Matrix

row

col

value

252

8.14 Use Cartesian product to calculate matrix multiplication

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from MatrixA") /Query matrix table A

3 =A1.query("select * from MatrixB") /Query matrix table B

4 =xjoin(A2:A; A3:B, A.col==A3.row)
/Use xjoin function to calculate the cross product of two
tables, and perform conditional filtering at the same time

5 =A4.groups(A.row:row,B.col:col;sum(A.value * B.value):value)
/Group and aggregate the results to calculate the values of
each row and column

SPL script is as follows, where xjoin() function is used to calculate the cross product and perform the

conditional filtering at the same time:

row col value

1 1 14

1 2 32

2 1 32

2 2 77

A5

253

8.15 Use left join to calculate Cartesian product

Left join two tables to calculate Cartesian product.

Based on the associated Community table and Age table, find the age group each

community resident belongs to.

ID Name Age

1 David 28

2 Daniel 15

3 Andrew 65

4 Rudy

Community

Group Start End

Children 0 15

Youth 16 40

Middle 41 60

Old 61 100

Age

254

8.15 Use left join to calculate Cartesian product

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Community") /Query Community table

3 =A1.query("select * from Age") /Query Age table

4
=xjoin@1(A2:Person; A3:Age, A3.Start<=Person.Age &&
A3.End>=Person.Age)

/Use xjoin@1() function to calculate cross product by left join,
and select the records of age in the corresponding age range

5
=A4.new(Person.ID:ID, Person.Name:Name,
Person.Age:Age,Age.Group:Group)

/Create a table sequence to return the age group of each
person

SPL script is as follows, where @1 option is used with xjoin() function to calculate the cross product through

the left join:

ID Name Age Group

1 David 28 Youth

2 Daniel 15 Children

3 Andrew 65 Old

4 Rudy (null) (null)

A5

255

8.16 Join query between big data tables and large dimension table

Join query over two big data tables and an ordered btx file.

Based on the associated Order table, Detail and Product table, find the total sales quantity of each

product in January 2014. The Order table and Detail table are big data files, and the product table is a btx

file ordered by ID.

Order

ID

CustomerID

EmployeeID

Date

Detail

ID

ProductID

Amount

Product

ID

Name

Category

…

256

8.16 Join query between big data tables and large dimension table

A B

1 =file("Detail.ctx").create().cursor() /Create a cursor for Detail table

2
=file("Order.ctx").create().cursor(;year(Date)==2014 &&
month(Date)==1)

/Create a cursor for Order table in Jan 2014

3 =file("Product.btx") /Create Product.btx object

4 =A1.joinx@i(ID,A2:ID) /Use @i option with cs.joinx function to perform a join filter

5 =A4.joinx(ProductID,A3:ID,Name:ProductName)
/Use cs.joinx function to join Detail table and Product table by
ProductID

6 =A5.groups(ProductName; count(~):Count) /Group and aggregate the sales quantity of each product

cs.joinx() function is used here to join files, where the btx file should be ordered by the joining field. SPL script

is as follows:

ProductName Count

Milk 32

Coffee 60

… …

A6

257

8.17 Fast join query between small data table and large dimension table

After a cursor is generated for a table with a small amount of data, perform a fast join query between it

and an ordered btx file.

Based on the associated btx file Sales and btx file Customer, find the customer names with top three

sales amounts in 2014.

Customer

ID

Name

City

…

Sales

ID

CustomerID

OrderDate

Amount

…

258

8.17 Fast join query between small data table and large dimension table

A B

1 =file("Sales.btx").cursor@b().select(year(Date)==2014) /Create a cursor for Sales.btx, and select records of 2014

2 =file("Customer.btx") /Create Customer.btx object, which is ordered by CustomerID

3 =A1.groups(CustomerID;sum(Amount):Amount)
/Group by customerID and get sum of sales amount of each
customer

4 =A3.top(-3;Amount) /Select top3 sales amounts

5 =A4.joinx@q(CustomerID,A2:ID,Name:CustomerName).fetch()
/Use cs.joinx function to join Sales table and Customer table
by CustomerID, and @q option is used to speed up the join as
the data amount is small

Use cs.joinx() function to join with a segmentable btx file. When the amount of data is small, @q option can be

used to speed up the join. SPL script is as follows:

CustomerID Amount CustomerName

71 130672.64 SAVEA

63 64238.0 QUICK

20 53467.38 ERNSH

A5

259

8.18 Fast join query over same-order data tables and large dimension table

The fast join query over two cursors and an ordered btx file. It requires that the cursor be ordered by the first join

field.

Based on the associated Order table, Returns table and Product table, find the total refund of each product in

2015.

Order

ID

CustomerID

Amount

…

Returns

OrderID

ProductID

Date

…

Product

ID

Name

Category

…

260

8.18 Fast join query over same-order data tables and large dimension table

A B

1 =file("Returns.btx").cursor@b().select(year(Date)==2015) /Create a cursor for Returns.btx

2 =file("Order.btx") /Create Order.btx file object

3 =file("Product.btx") /Create Product.btx file object

4
=A1.joinx@qc(OrderID,A2:ID,Amount;ProductID,A3:ID,Cate
gory)

/Use cs.joinx function to join Order.btx by OrderID, and
Product.btx by ProductID. @qc options are used together to
speed up the join

5 =A4.groups(Category; sum(Amount)) /Group by category and sum the amount

cs.joinx() function is used to join files. @c option can be used to speed up the join if the cursor is ordered by

the first join field. You can also use @c and @q at the same time. SPL script is as follows:

Category Amount

Electric appliance 1854.5

Fruits 251.5

… …

A5

261

8.19 Join two tables through locating records by sequence numbers

Join two tables by locating records according to their sequence numbers.

Based on the associated Product table and Category table, find all products with "drink" in their category

name.

Product

ID

PName

CategoryID

…

Category

ID

CName

Description

…

262

8.19 Join two tables through locating records by sequence numbers

A B

1 =connect("demo") /Connect to database

2 =A1.query("select * from Product") /Query Product table

3 =A1.query("select * from Category") /Query Category table

4 =A2.join(CategoryID,A3:#,CName)
/Use A.join() function to join Category table by CategoryID, which is located in
Category table by sequence numbers, and add the foreign key field CName

5 =A4.select(like@c(CName, "*drink*"))
/Select records that contain the string "drink" in the category name; case
insensitive

A.join() function is used to perform a join, where # is used to locate a record by its sequence number. SPL

script is as follows:

ID Name CategoryID CName

24 Soda 1 Drink

34 Beer 1 Drink

35 Orange Juice 1 Drink

… … … …

A5

263

8.20 Perform an alignment join by positions to shuffle values of a field

To shuffle and encrypt the letters through an alignment join.

Shuffle and encrypt values of a certain column in the database and then write them back to the

database.

ID ORIGINAL_VALUE SHUFFLED_VALUE

1 D N

2 U n

3 j K

4 N D

… … …

264

8.20 Perform an alignment join by positions to shuffle values of a field

A B

1 =connect("demo") /Connect to database

2 =A1.query("select ID,ORIGINAL_VALUE from REF_VALUES") /Query REF_VALUES table

3 =A2.sort(rand()) /Sort by random seed to shuffle the table sequence

4 =join@p(A2.(ID);A3.(ORIGINAL_VALUE))
/Use join@p to join IDs and shuffled values in pair by
sequence numbers

5
=A1.update@u(A4, REF_VALUES, ID:_1, SHUFFLED_VALUE:_2;
ID)

/According to the primary key ID, update the result of A4
to the database table Ref_ VALUES

@p option is used with join() function to perform an alignment join by sequence numbers. SPL script is as

follows:

265

8.21 Perform alignment join over multiple tables by sequence numbers

Perform alignment join over four associated tables according to sequence numbers, then group and calculate

the average for each group.

Based on the associated Order table, Payment table, Product table and Evaluation table, find the average

evaluation score of each category of products in the orders that did not use installment payment in 2014.

Order

ID

CustomerID

ProductID

Date

Payment

ID

Channel

Installments

Date

Evaluation

ID

Score

Date

Comment

Product

ID

Name

Category

266

8.21 Perform alignment join over multiple tables by sequence numbers

A B

1 =connect("demo") /Connect to database

2 =A1.query("select * from Order order by ID") /Query Order table

3 =A1.query("select * from Payment order by ID") /Query Payment table

4 =A1.query("select * from Evaluation order by ID") /Query Evaluation table

5 =A1.query("select * from Product") /Query Product table

6 =A2.switch(ProductID, A5:ID)
/Use switch function to switch ProductID to
corresponding records in Product table

7 =join@p(A6:Order;A3:Payment;A4:Evaluation) /Use join@p to join three tables by positions

8 =A7.select(year(Order.Date)==2014 && !Payment.Instalments) /Select orders not using instalments in 2014

9
=A8.groups(Order.ProductID.Category;
avg(Evaluation.Score):Score)

/Group by category and calculate the average evaluation
score of each category

@p option is used with join() function to perform a join by positions. SPL script is as follows:

Category Score

Electric appliance 3.98

Fruits 3.86

… …

A9

267

8.22 Cross Apply operation

Traverse multiple data files, perform Cross Apply operation between a table sequence and values of a sequence to

generate a new table sequence.

Traverse all the online learning terminal questionnaires of a primary school stored in the folders, and calculate the

proportion of each terminal.

ID STUDENT_NAME TERMINAL

1 Rebecca Moore Phone

2 Ashley Wilson Phone,PC,Pad

3 Rachel Johnson Phone,PC,Pad

4 Emily Smith Phone,Pad

5 Ashley Smith Phone,PC

6 Matthew Johnson Phone

7 Alexis Smith Phone,PC

8 Megan Wilson Phone,PC,Pad

… … …

268

8.22 Cross Apply operation

A B C
1 =directory@ps("D:/Primary School") /Recursively traverse all the files in the specified directory

2 for A1 =file(A2).xlsimport@t()
/Import the Excel file of each class 's questionnaire in
loop

3 =@+=B2.len()
/Calculate the total number of rows, i.e. the total
number of students

4
=B2.news(B2.TERMINAL.split@c(); ID,
STUDENT_NAME, ~:TERMINAL)

/Use news function to perform Cross Apply operation
between the questionnaire and the split sequence of
terminals

5 =B4.groups(TERMINAL; count(~):Count)|@
/Group by terminal and count the number of each
terminal, merge the results to the current cell value. If
you merge B4 directly, you may run out of memory.

6
=B5.groups(TERMINAL;string(sum(Count)/B3,
"#.##%"):PERCENTAGE)

/Calculate the percentage of each type of terminal

Use A.news() function to perform Cross Apply operation between the table sequence and the split

sequence of terminals. SPL script is as follows:

A6

TERMINAL PERCENTAGE

PC 70%

Pad 56.67%

Phone 93.33%

269

8.23 Outer Apply operation

Perform Outer Apply operation on a table sequence and values of a sequence to generate a new table

sequence.

According to the PostRecord table, find the most commonly used labels of each author.

ID TITLE Author Label

1 Easy analysis of Excel Ashley Excel,ETL,Import,Export

2 Early commute: Easy to pivot excel Rachel Excel,Pivot,Python

3 Initial experience of SPL Rebecca

4 Talking about set and reference Emily Set,Reference,Dispersed,SQL

5 Early commute: Better weapon than Python Emily Python,Contrast,Install

… … … …

270

8.23 Outer Apply operation

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from PostRecord") /Query PostRecord table

3
=A2.news@1(A2.Label.split@c();
ID,Title,Author,~:Label)

/Use @1 option with A.news function to perform Outer Apply
operation on the post records and the split sequence of labels. Keep
the post records even if the label does not exist

4 =A3.groups(Author,Label;count(~):Count) /Group and count the number of each label for each author

5 =A4.group(Author).conj(~.maxp@a(Count)) /Group by author and select the most frequently used labels

SPL script is as follows，where @1 option is used with A.news() function to perform Outer Apply operation:

A5 Author Label Count

Rebecca (null) 1

Ashley Excel 3

Ashley SPL 3

Rachel Python 4

… … …

271

8.24 Convert Apply operation to Cartesian product

Join fields of sequences to calculate cross product and generate a new table sequence.

Based on the Teachers table and Courses table, find the name of each teacher that potentially be

able to teach a course.

Teacher Branch Courses

Petitti Matematica 28,33,30,35

Canales Apesca 11,16,12,17,13,18,14,19

Lucero NavegacionI 6,11,16,21,7,12,17,22,…

Bergamaschi TecPesc 1,26,2,27,3,28,4,29,5,30

… … …

ID Name

1 lua

2 maa

3 mia

4 jua

… …

Teachers Courses

272

8.24 Convert Apply operation to Cartesian product

A B

1
=file("Teachers.txt").import@t().run(Courses=Courses.s
plit@cp())

/Import Teachers.txt, and split Courses field to a sequence by
comma

2 =file("Courses.txt").import@t() /Import Courses.txt

3 =A2.news(A1;ID,Name:Course,Teacher,Courses)
/Use A.news function to calculate the cross product of Courses.txt
and Teachers.txt

4 =A3.select(Courses.contain(ID))
/Select records where the course ID is included in the sequence of
courses

5 =A4.group(Course;~.(Teacher).concat@c():Teachers)
/Group by course, and concatenate the sequence of teachers with
commas to form the Teachers field

SPL script is as follows，where A.news() function is used to calculate the cross product of a table sequence with

another sequence:

A5 Course Teachers

jua Bergamaschi,Puebla,Jimenez

jub Lucero,Mazza,Puebla,Chiatti,Jimenez,Luceroo

juc Canales,Lucero,Mazza,Puebla,Chiatti,Luceroo

… …

273

8.25 Complex uses of Apply operation

Perform join over three tables to generate a new table sequence and then group & aggregate.

Based on the associated Employee table, Order table and Detail table, give the salespeople whose

actual amount of a single order exceeds 1000 a performance reward of 5% of the order amount.

Order

ID

CustomerID

EmployeeID

Date

Detail

ID

ProductID

Amount

Discount

Employee

ID

Name

Dept

…

274

8.25 Complex uses of Apply operation

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Order where year(Date)=2014") /Query data of 2014 in Order table

3 =A1.query("select * from Detail") /Query Detail table

4 =A1.query("select * from Employee") /Query Employee table

5 =A2.switch(EmployeeID,A4:ID)
/Use switch function to switch EmployeeID in Order table to
corresponding records in Employee table

6 =A3.group(ID) /Group Detail table by order ID

7
=A6.news(A2.select(ID:A6.~.ID);
EmployeeID,(s=sum(Amount*(1-Discount)), if(s>1000, s*1.05,
s)):Amount)

/Use news function to join Detail table and Order table by order ID,
and calculate the actual amount of each order

8 =A7.groups(EmployeeID.Name:Name; sum(Amount):Amount) /Group records and calculate the total sales amount of each employee

A.news() function is used to perform join and calculation. SPL script is as follows:

Name Amount

Alexis 358882.02

Emily 432435.85

… …

A8

275

SPL
COOKBOOK

Inter-set operations

Chapter 9

276

9.1 Concatenation of two sets

Concatenate and calculate the data in two tables of the same structure.

According to the sales records in 2014 and 2015, calculate the total number of orders per

customer in the two years.

ID Customer Date Amount

10400 EASTC 2014/01/01 3063.0

10401 RATTC 2014/01/01 3868.6

10402 ERNSH 2014/01/02 2713.5

… … … …

277

9.1 Concatenation of two sets

A B

1 =file("S2014.txt").import@t(Customer) /Import customers of 2014

2 =file("S2015.txt").import@t(Customer) /Import customers of 2015

3 =A1 | A2
/Use "|" to concatenate customers, including the duplicate ones, of the two
years.

4 =A3.groups(Customer; count(~):Count) /Count the orders of each customer

SPL script is as follows, where symbol "|"is used to calculate the concatenation:

Customer Count

ANATR 5

ANTON 6

… …

A4

278

9.2 Intersection of two sets

ID StudentID Subject

1 2 Painting

2 4 Dance

3 3 Robot

4 2 Dance

5 5 Writing

… … …

Calculate the intersection of two sets.

In the after-school classes registration table, query which students sign up for both painting class

and dance class.

279

9.2 Intersection of two sets

SPL script is as follows, where symbol"^" is used to calculate the intersection.

A B

1 =file("Interest.txt").import@t() /Import the text file

2 =A1.select(Subject:"Painting") /Get records of painting

3 =A1.select(Subject:"Dance") /Get records of dancing

4 =A2.(StudentID) ^ A3.(StudentID)
/Use "^" to get intersection of students who sign up for painting
and dancing

A4 Member

2

8

11

…

280

9.3 Union of two sets

ID StudentID Subject

1 2 Painting

2 4 Dance

3 3 Robot

4 2 Dance

5 5 Writing

… … …

Calculate the union of two sets.

Based on the after-school class registration table, query which students sign up for the

painting class or dance class.

281

9.3 Union of two sets

SPL script is as follows, where symbol "&"is used to calculate the union:

A B

1 =file("Interest.txt").import@t() /Import the text file

2 =A1.select(Subject:"Painting") /Get records of painting

3 =A1.select(Subject:"Dance") /Get records of dancing

4 =A2.(StudentID) & A3.(StudentID)
/Use "&" to get the union of students who sign up for painting or
dancing

A4 Member

2

4

8

…

282

9.4 Difference of two sets

Calculate the difference of two sets.

Query the new customers according to the sales table and customer table.

Customer

ID

Name

City

…

Sales

ID

Customer

OrderDate

…

283

9.4 Difference of two sets

A B

1 =connect("db") /Connect to the database

2
=A1.query("select * from Sales where
year(OrderDate)=2014")

/Get sales records of 2014

3 =A1.query("select * from Customer") /Get records from Customer table

4 =A2.id(Customer)
/Use id function to remove duplicate sales records to get a sequence of
unique customers

5 =A3.(ID) /Get the sequence of customer IDs from Customer table

6 =A4\A5 /Use "\" to get the difference

SPL script is as follows, where symbol "\" is used to calculate the difference:

Member

DOS

HUN

URL

A6

Note: This example is for explaining how to perform a difference operation. Actually it's more convenient to

get same result using A.switch@d()/A.join@d(), which perform a join and filtering.

284

9.5 XOR operation of two sets

The XOR operation (symmetric difference) of two sets.

According to the different score records of the two semesters, find the student IDs whose

total scores rank in top 10 only once in both the first and second semesters.

CLASS STUDENTID SUBJECT SCORE

Class one 1 English 84

Class one 1 Math 77

Class one 1 PE 69

Class one 2 English 81

Class one 2 Math 80

… … … …

285

9.5 XOR operation of two sets

SPL script is as follows, where the XOR operator "%"is used.

A B

1 =file("Scores1.csv").import@ct() /Import scores of the first semester

2 =file("Scores2.csv").import@ct() /Import scores of the first semester

3 =A1.groups(STUDENTID; sum(SCORE):Score) /Group by students and sum their total scores in the first semester

4 =A2.groups(STUDENTID; sum(SCORE):Score) /Group by students and sum their total scores in the second semester

5 =A3.top(-10;Score).(STUDENTID) /Get student IDs whose total scores rank in top 10 in the first semester

6 =A4.top(-10;Score).(STUDENTID) /Get student IDs whose total scores rank in top 10 in the second semester

7 =A5%A6 /Get unique student IDs from A5 and A6

Member

2

9

4

10

…

A5 Member

12

1

8

4

…

A6 Member

2

9

10

7

…

A7

286

9.6 Mixed use of concatenation and difference

Branch

BID

Street

City

DVD

DVDID

Category

Title

DVDCopy

CopyID

DVDID

BID

Status

LastDateRented

LastDateReturned

MemberID

Calculate the concatenation and difference of multiple sets.

Query the branch stores with less than 4 categories of DVD copies:

Branch table stores the information of DVD branch stores; DVD table stores the title and category information

of DVD; DVDCopy table stores multiple copies of DVD. DVD copies are the information of concrete discs stored

in each branch store.

287

9.6 Mixed use of concatenation and difference

A B

1 =connect("db") /Connect to database

2 =Branch=A1.query("select * from Branch") /Read the branch information and define it as Branch variable

3 =DVD=A1.query("select * from DVD") /Read DVD information and define it as DVD variable

4 =DVDCopy=A1.query("select * from DVDCopy") /Read the DVDCopy information and define it as DVDCopy variable

5 =DVDCopy.switch(DVDID,DVD:DVDID; BID,Branch:BID) /Convert the DVDID field of DVDCopy into the corresponding records in
DVD, and the BID field to the corresponding records in Branch

6
=DVDCopy.select(STATUS!="Miss" &&
LASTDATERETURNED!=null)

/Filter away lost and unreturned DVD copies

7 =A6.group(BID) /Group the filtered data by BID

8 =A7.select(~.icount(DVDID.CATEGORY)<4) /Select branches with DVD copies less than 4 categories

9
=A8.(BID) | (Branch \ A7.(BID)) /Branches with out of stock DVD copies. A8.(BID) refers to the branches

whose categories of DVD copies are less than 4, and Branch \ A7.(BID) the
branches that never have any DVD copies

SPL script is as follows, in which the concatenation operator | and the difference operator \ are used:

BID STREET CITY

B002 Street2 Houston

B003 Street3 LA

B004 Street4 Lincoln

A9

288

9.7 Set operations of sequences: intersection and union

Calculate the intersection and union of sequences.

List municipalities directly under the central government and the first-tier cities, and get cities that

are both municipalities and the first-tier cities. In China, municipalities are Beijing, Tianjin, Shanghai

and Chongqing; the first-tier cities include Shanghai, Beijing, Shenzhen and Guangzhou.

289

9.7 Set operations of sequences: intersection and union

SPL script is as follows:

A B

1 [Beijing,Tianjin,Shanghai,Chongqing] /Municipalities directly under the Central Government

2 [Shanghai,Beijing,Shenzhen,Guangzhou] /The first-tier cities

3 =A1&A2 /Get the union of municipalities and the first-tier cities

4 =A1^A2 /Get the intersection, i.e. the-first tier cities among the municipalities

A4 Member

Beijing

Shanghai

A3 Member

Beijing

Tianjin

Shanghai

Chongqing

Shenzhen

Guangzhou

290

9.8 Concatenation of all set members in a sequence

Calculate the concatenation in an aggregate operation over a sequence.
The relationship of Order table and OrderDetail table are that of main table and sub table. Each Order
record corresponds to multiple OrderDetail records.

Order

ID

Customer

Date

OrderDetail

OrderID

Number

Product

Amount

★

★

★

The OrderDetail records vary in length. Task: to get the following table:

ID Customer Date Product1 Amount1 Product2 Amount2 Product3 Amount3

1 3 20190101 Apple 5 Milk 3 Salt 1

2 5 20190102 Beef 2 Pork 4

3 2 20190102 Pizza 3

291

9.8 Concatenation of all set members in a sequence

A B
1 =connect("db") /Connect to the database

2
=A1.query("select * from OrderDetail left join Order on
Order.ID=OrderDetail.OrderID")

/Import the two tables and left join Order table by order IDs

3 =A2.group(ID) /Group retrieved records by order ID

4
=A3.max(~.count()).("Product"+string(~)+","+"Amount
"+string(~)).concat@c()

/Calculate the maximum number of members, and then generate
data structure strings

5 =create(ID,Customer,Date,${A4})
/Create a table sequence according to the data structure determined
by A4

6
>A3.run(A5.record([ID,Customer,Date]|~.([Product,Amount]).

conj()))

/Loop through the groups to piece members together into a
sequence and concatenate Product and Amount from these groups
using conj() function, and then insert the complete records into A5's
table sequence

SPL script is as follows, where A.conj() function is used to concatenate sequence-type members:

292

9.9 The union of all set members in a sequence

Select two sets of records from a table according to different conditions, and calculate their union.

Based on the following two tables, we want to find employees who have worked in the company

for less than one year and who are among the bottom 10% in terms of performances.

Sales

ID

CustomerID

EmpID

Amount

Employee

ID

Name

EntryDate

293

9.9 The union of all set members in a sequence

SPL script is as follows, where A.union() function gets the union of the records in all table sequences and

returns a record sequence:

A B

1 =connect("db") /Connect to data source

2 =A1.query("select * from Employee") /Read Employee table

3 =A1.query("select * from Sales") /Read Sales table

4
=A2.select(age(EntryDate)<1) /Find employees whose employment duration

is less than one year

5
=A3.groups(EmpID; sum(Amount):Amount) /Group Sales table by EmpID and calculate

the total sales amount for each

6
=A5.top(A5.len()/10; Amount) /Get records where the employees' sales

amounts are among the bottom 10%

7
=A2.join@i(ID,A6:EmpID) /Perform a filtering join on Employee table

and A6's records

8
=[A4,A7].union() /Get union of A4's set and A7's set, which are

all the eligible employees

ID Name EntryDate

89 Emily 2020/02/01

241 Samantha 2020/01/01

… … …

A8

294

9.10 Merge same-order sets in the current order to calculate concatenation

For two tables of same structure, merge their records in order according to multiple fields.
Scores of math and English are stored in two files. Calculate the total score of each student.

CLASS STUDENTID SUBJECT SCORE

1 1 Math 77

1 2 Math 80

… … … …

CLASS STUDENTID SUBJECT SCORE

1 1 English 84

1 2 English 81

… … … …

Math:

English:

295

9.10 Merge same-order sets in the current order to calculate concatenation

A B

1 =file("Math.txt").import@t() /Import Math.txt

2 =file("English.txt").import@t() /Import English.txt

3 =A1.sort(CLASS,STUDENTID) /Sort Math table by CLASS and STUDENTID

4 =A2.sort(CLASS,STUDENTID) /Sort English table by CLASS and STUDENTID

5 =[A3,A4].merge(CLASS,STUDENTID) /merge() function is used to merge records in order by CLASS and
STUDENTID

6
=A5.groups@o(CLASS,STUDENTID;
~.sum(SCORE):TOTALSCORE)

/Use groups@o() to group records, which creates a new group whenever
the next value changes, and sums scores for each student

The SPL script uses A.merge(xi, …) function to concatenate table sequences by expressions xi, … :

CLASS STUDENTID TOTALSCORE

1 1 161

1 2 161

1 3 159

… … …

A6

296

9.11 Merge same-order sets to calculate union

Sales records are stored in Online table and Store table according to distribution channels. They are of

same structure. Records during promotion periods of both channels are stored in both tables. Calculate

the actual total sales.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

For two tables of same structure, merge their records in order according to values of a specified field and
remove the duplicate records.

297

9.11 Merge same-order sets to calculate union

A B

1 =file("Online.txt").import@t() /Import Online.txt

2 =file("Store.txt").import@t() /Import Store.txt

3 =A1.sort(OrderID) /Sort Online table by OrderID

4 =A2.sort(OrderID) /Sort Store table by OrderID

5 =[A3,A4].merge@u(OrderID) /Use @u option with the merge function to merge two tables by
OrderID and delete duplicates at the same time

6 =A5.sum(Amount) /Sum the sales amounts

The SPL script uses @u option of A.merge(xi, …) function to remove duplicate records during the order-based

merge:

Value

678756.41

A6

298

9.12 Merge same-order sets to calculate intersection

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

For two tables of same structure, merge their records in order according to values of the specified field,

and only keep the duplicate ones.

According to online sales records and store sales records, find out how many online and offline sales

records are repeatedly saved.

299

9.12 Merge same-order sets to calculate intersection

A B

1 =file("Online.txt").import@t() /Import Online.txt

2 =file("Store.txt").import@t() /Import Store.txt

3 =A1.sort(OrderID) /Sort Online table by OrderID

4 =A2.sort(OrderID) /Sort Store table by OrderID

5 =[A3,A4].merge@i(OrderID) /Use @i option with the merge function to merge the two tables in
order by order ID, and return the common members

6 =A5.count() /Count the common records

SPL script is as follows, where @i option of A.merge(xi, …) function is used to return a table sequence consisting

of common members of A(i):

Value

70

A6

300

9.13 Merge same-order sets to calculate XOR

For two tables of same structure, merge their records in order according to values of the specified

field, and only keep the non-duplicate ones.

Compare two random sampling files and list different sequence numbers.

ID Predicted_Y Original_Y

10 0.012388464367608093 0.0

11 0.01519899123978988 0.0

13 0.0007920238885061248 0.0

19 0.0012656367468159102 0.0

21 0.009460545997473379 0.0

23 0.024176791871681664 0.0

… … …

301

9.13 Merge same-order sets to calculate XOR

A B

1 =file("p1.txt").import@t() /Read the first sampling file

2 =file("p2.txt").import@t() /Read the second sampling file

3 =A1.sort(ID) /Sort the first file by ID

4 =A2.sort(ID) /Sort the second file by ID

5 =[A3,A4].merge@x(ID) /Use @x option with the merge function to merge the files in order by
ID and return records with different IDs.

6 =A5.len() /Return the number of different IDs

SPL script is as follows, where @x option of A.merge(xi, …) function is used to return a table sequence

consisting of members of A(i) after removing the common members:

Value

458

A6

302

9.14 Merge same-order sets to calculate difference

For two tables of same structure, merge their records in order according to values of the specified field and query

differences.

Two transaction information files based on different versions are stored as new.csv and old.csv. Find out the newly-

added, deleted and modified records respectively.

UserName Date SaleValue SaleCount

Rachel 2015-03-01 4500 9

Rachel 2015-03-03 8700 4

Tom 2015-03-02 3000 8

Tom 2015-03-03 5000 7

Tom 2015-03-04 6000 12

John 2015-03-02 4000 3

John 2015-03-02 4300 9

John 2015-03-04 4800 4

UserName Date SaleValue SaleCount

Rachel 2015-03-01 4500 9

Rachel 2015-03-02 5000 5

Ashley 2015-03-01 6000 5

Rachel 2015-03-03 11700 4

Tom 2015-03-03 5000 7

Tom 2015-03-04 6000 12

John 2015-03-02 4000 3

John 2015-03-02 4300 9

John 2015-03-04 4800 4

old.csv new.csv

303

9.14 Merge same-order sets to calculate difference

A B

1 =file("old.csv").import@ct() /Import old.csv

2 =file("new.csv").import@ct() /Import new.csv

3 =A1.sort(UserName,Date) /Sort old table by UserName and Date

4 =A2.sort(UserName,Date) /Sort new table by UserName and Date

5 =new=[A4,A3].merge@d(UserName,Date) /merge@d() deletes records of A3 from A4 while performing order-based
merge to generate a sequence of new records

6 =delete=[A3,A4].merge@d(UserName,Date) /merge@d() deletes records of A4 from A3 while performing order-based
merge to generate a sequence of deleted records

7
=diff=[A4,A3].merge@d(UserName,Date,SaleValue,Sale
Count)

/merge@d() gets records of A4 where the specified field values differ from
A3 while performing order-based merge

8 =update=[diff,new].merge@d(UserName,Date) /merge@d() deletes new records from different records while performing
order-based merge to generate a sequence of updated records

9 return [new, delete, update] /Return a sequence consisting of sequences of new, deleted and updated
records

The SPL script uses @d option of A.merge(xi, …) function to remove members of A(2) &…A(n) from A(1) to

generate a new table sequence:

304

new

9.14 Merge same-order sets in the current order to calculate difference

UserName Date SaleValue SaleCount

Ashley 2015-03-01 6000 5

Rachel 2015-03-02 5000 5

delete

UserName Date SaleValue SaleCount

Tom 2015-03-02 3000 8

update

UserName Date SaleValue SaleCount

Rachel 2015-03-03 11700 4

A9

Members

[[Ashley,2015-03-01,6000,5], …]

[[Tom,2015-03-02,3000,8]]

[[Rachel,2015-03-03,11700,4]]

305

9.15 Merge table sequences by primary key to calculate concatenation

For tables of same structure, merge their records in order according to the primary key.

According to the body temperature records from June 1 to 20, get a list of students who have had
a fever for at least 3 days consecutively.

StudentID Name Fever

10 Ryan 0

5 Ashley 0

13 Daniel 1

19 Samantha 0

1 Rebecca 0

… … …

306

9.15 Merge table sequences by primary key to calculate concatenation

A B

1 =to(601, 620) /Create a sequence of file names

2 =A1.(file(string(~)+".txt").import@t()) /Import files from June 1 to June 20 in loop

3 =A2.(~.keys(StudentID).sort(StudentID)) /Set StudentID as the primary key and sort the files by the key

4 =A3.merge() /merge() compares the primary key values to perform the order-based
merge

5 =A4.group@o(StudentID,Fever) /group@o() creates a new group whenever the key value changes

6
=A5.select(~.Fever==1 &&
~.len()>=3).id(Name)

/Get students who have had a fever for at least 3 days consecutively

The SPL script uses A.merge() function to perform an order-based merge by the primary key as long as

the primary key is set for A(i):

Name

Ashley

Rachel

A6

307

9.16 Merge table sequences to find differences

ID Predicted_Y Original_Y

10 0.012388464367608093 0.0

11 0.01519899123978988 0.0

13 0.0007920238885061248 0.0

19 0.0012656367468159102 0.0

21 0.009460545997473379 0.0

23 0.024176791871681664 0.0

… … …

Find how many rows of data are different between two data files of same structure.
Find how many rows of data are different between two CSV files.

308

9.16 Merge table sequences to find differences

A B

1 =file("p1.txt").import@t() /Import the first sampling file p1

2 =file("p2.txt").import@t() /Import the second sampling file p2

3 =[A1,A2].merge@x()
/merge() compares all fields to perform the order-based merge. @x
option returns a sequence of different IDs, that is, the records with
different IDs

4 =A3.len() /Return the number of different records

SPL script uses A.merge() function to compare all fields to perform the order-based merge when no primary

key is set for A(i):

Value

458

A4

309

9.17 Merge unordered tables to calculate union

Merge records in two tables of same structure and calculate sum. The tables have common

records and are unordered.

According to two sales record tables db1 and db2 of same structure in the database,

calculate the total sales amount in 2014.

OrderID Customer SellerId OrderDate Amount

10426 GALED 4 2014/01/27 338.2

10676 TORTU 2 2014/09/22 534.85

10390 ERNSH 6 2013/12/23 2275.2

10400 EASTC 1 2014/01/01 3063.0

10464 FURIB 4 2014/03/04 1848.0

… … … … …

310

9.17 Merge unordered tables to calculate union

A B

1
=connect("db1").query("select * from
Sales")

/Query Sales table from db1

2
=connect("db2").query("select * from
Sales")

/Query Sales table from db2

3 =[A1,A2].merge@ou(OrderID)
/merge() performs the order-based merge by OrderID. @o option indicates that
the records are not necessarily ordered by OrderID; @u option removes records
with duplicate IDs

4 =A3.select(year(OrderDate)==2014) /Get records of 2014

5 =A4.sum(Amount) /Calculate the total sales in 2014

SPL script is as follows, where @o option is used with A.merge(xi, …) function. It does not assume that

A(i) is ordered by [xi,…] :

Value

723388.75

A5

311

9.18 Aggregation of sequences: union & difference

Calculate union or difference of sequence-type members in a sequence.

According to the course table and course selection table, query which courses are not selected in the course

table.

Course SelectCourse

ID STUDENTID COURSE

1 59 2,7

2 43 1,8

3 52 2,7,10

4 44 1,10

5 37 5,6

6 57 3

… … …

ID NAME TEACHERID

1 Environmental protection and … 5

2 Mental health of College Students 1

3 Computer language Matlab 8

4 Electromechanical basic practice 7

5 Introduction to modern life science 3

6 Modern wireless communication system 14

… … …

312

A6

9.18 Aggregation of sequences: union & difference

A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Course") /Query the Course table

3 =A1.query("select * from SelectCourse") /Query the SelectCourse table

4 =A3.union(COURSE.split@cp())
/Split selected courses in SelectCourse table by comma and get union of theses course
sequences using union() function

5 =A2.(ID) /Get course IDs from the Course table

6 =A2(A5.pos([A5,A4].diff()))
/Get difference of course IDs in the two tables, i.e. the courses that no students select; then
find their positions in A5 and get them from A2

A.union() function calculates the union of all sequence-type members in a sequence;

A.diff() function calculates the difference of all sequence-type members in a sequence.

SPL script is as follows:

ID NAME TEACHERID

1 Fundamentals of economic management 21

313

9.19 Aggregation of sequences:intersection

Calculate intersection of sequence-type members in a sequence.

According to the sales table, find the customers whose order amounts rank in top 20 in each

month of 2014.

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

314

9.19 Aggregation of sequences:intersection

SPL script is as follows, where A.isect() function is used to calculate the intersection of all sequence-type members:

A B

1 =connect("db").query("select * from sales") /Connect to data source to query the sales table

2 =A1.select(year(OrderDate)==2014) /Select records of 2014

3 =A2.group(month(OrderDate)) /Use group() function to group records of 2014 by month

4 =A3.(~.group(Customer)) /Group each group again by customer

5 =A4.(~.top(-20;sum(Amount))) /Loop through records of each month to find customers whose order
amounts rank in top 20 in each month

6 =A5.(~.(Customer)) /List the top 20 customers in each month

7 =A6.isect() /Get intersection of groups using isect() function

Member

HANAR

SAVEA

A7

315

9.20 Perform mixed set operations over two small files

Perform the required set operations based on two text files.

According to the members tables of running club and ball club, get all members in the

two clubs, members who participate in at least one club, members who participate in two

clubs at the same time, and members who only participate in running club.

316

9.20 Perform mixed set operations over two small files

A B

1 =file("E:/txt/running.txt").import@t().([NAME,SURNAME]) /Members of running club

2 =file("E:/txt/ball.txt").import@t().([NAME,SURNAME]) /Members of ball club

3 =A1|A2 /Concatenation, all members of the two clubs

4 =A1&A2 /Union, members who join at least one club

5 =A1^A2 /Intersection, members who join both clubs

6 =A1\A2 /Difference, members who only join the running club

SPL script is as follows:

A3

member

[Joshua,Johnson]

[Sophia,Williams]

…

member

[Joshua,Johnson]

[Sophia,Williams]

…

member

[Joshua,Johnson]

[Zachary,Williams]

…

member

[Sophia,Williams]

[Christopher,Johnson]

…

A4 A5 A6

317

9.21 Perform complex set operations over two small files

Perform complex set operations over text files.

The user login information is stored in different files by month. Query users who log in at

least once in three months, users who log in every month within three months, and users

who log in only in January.

318

9.21 Perform complex set operations over two small files

A B

1 =file("E:/txt/user_login_info_1.txt").import@t().group@1(userid) /Users' first login information in January

2 =file("E:/txt/user_login_info_2.txt").import@t().group@1(userid) /Users first login information in Feb

3 =file("E:/txt/user_login_info_3.txt").import@t().group@1(userid) /Users first login information in Mar

4 =[A1,A2,A3].merge@u(userid) /Union，users who log in at least once in 3 months

5 =[A1,A2,A3].merge@i(userid) /Intersection，users who log in every month for 3 months

6 =[A1,A2,A3].merge@d(userid) /Difference，users who log in only in January

SPL script is as follows:

userid login

6000012019-01-25 02:49:43

6000022019-01-20 03:00:28

6000032019-01-13 14:34:20

… …

userid login

6000012019-01-25 02:49:43

6000022019-01-20 03:00:28

6000032019-01-13 14:34:20

… …

userid login

6012932019-01-10 08:04:36

6019992019-01-11 16:49:25

6052272019-01-18 15:24:26

… …

A4 A5 A6

319

9.22 Merge two big data tables to calculate concatenation

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

Merge and calculate two big data tables of same structure.

There are sales record tables of same structure in db1 and db2 respectively. The data volume is too large to be

loaded into memory. Calculate the monthly sales records count in 2014.

320

9.22 Merge two big data tables to calculate concatenation

A B

1
=connect("db1").cursor("select * from Sales where
year(OrderDate)=2014 order by OrderDate")

/Query Sales table of 2014 in db1 and sort it by OrderDate

2
=connect("db2").cursor("select * from Sales where
year(OrderDate)=2014 order by OrderDate")

/Query Sales table of 2014 in db2 and sort it by OrderDate

3 =[A1,A2].mergex(OrderDate) /mergex() merges the two cursors by OrderDate

4
=A3.groups@o(month(OrderDate):Month;
count(~):Count)

/groups() groups and summarize sales records count for each
month. @o option creates a new group whenever the month
changes

The SPL script uses CS.mergex(xi, …) function to merge sequences of records in cursors:

Month Count

1 33

2 29

… …

A5

321

9.23 Merge two big data tables to calculate union

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

Merge and calculate two big data tables of same structure. The tables have some common records.

There are sales record tables of same structure in db1 and db2 respectively. The data volume is too large to

be loaded into memory. Calculate the total order amount of each customer in 2014.

322

9.23 Merge two big data tables to calculate union

A B

1
=connect("db1").cursor("select * from Sales where
year(OrderDate)=2014 order by OrderID")

/Query Sales table of 2014 in db1 and sort it by OrderID

2
=connect("db2").cursor("select * from Sales where
year(OrderDate)=2014 order by OrderID")

/Query Sales table of 2014 in db2 and sort it by OrderID

3 =[A1,A2].mergex@u(OrderID) /mergex@u() removes duplicate records while merging the
cursors by OrderID

4 =A3.groups(Customer; sum(Amount):Amount) /Use groups() function to group and summarize each customer's
sales amount

CS.mergex(xi, …) function supports a number of options, such as @u, @i, @d and @x, which work

similarly to options for A.merge().

Customer Amount

ANATR 1129.75

ANTON 6452.15

… …

A5

323

SPL
COOKBOOK

Transposition

Chapter 10

324

Class StudentID Subject Score

Class one 1 Math 89

Class one 1 Chinese 93

Class two 2 Math 92

Class two 2 Chinese 97

Class MathMax ChineseMax

Class one 89 93

Class two 92 97

Database pivot function supports row to column
conversion

Row to column transposition: Merge multiple rows into one row, during which specific values

of a specified column are converted into new columns. The new columns get their values

from another column in the original rows.

Find the highest score of each subject in each class based on score table.

10.1 Row to column transposition

325

The SQL query:

select * from (select Class, Subject, Score from StudentScore)
pivot (

max(Score) for Subject in (
'Math' as MathMax, 'Chinese' as ChineseMax

)
)

This is an example of Oracle. Not all databases have pivot functions. Pivot is only supported in new

versions of mainstream databases.

10.1 Row to column transposition

326

Class Subject MaxScore

Class one Math 89

Class one Chinese 93

Class two Math 92

Class two Chinese 97

Then use SPL pivot function to
perform the row to column conversion.

Class MathMax ChineseMax

Class one 89 93

Class two 92 97

Row to column transposition in SPL: first, get the highest score of each subject from the database.

10.1 Row to column transposition

327

The SPL script is as follows:

A1:Connect to database.

A2:The highest score of each subject in each class is directly retrieved from the database.

A3: Use pivot function to implement row to column conversion.

A

1 =connect("oracle")

2
=A1.query("select Class, Subject, max(Score) MaxScore from

StudentScore group by Class, Subject")

3
=A2.pivot(Class; Subject, MaxScore; "Math":"MathMax",

"Chinese":"ChineseMax")

10.1 Row to column transposition

328

10.1 Row to column transposition

329

Column to row transposition: Each value of column to be transposed generates a new row.

The column name or corresponding name becomes the value of a new column, and the

original column value becomes the value of another new column.

Generate subject score table based on the summary score table.

StudentID Math Chinese

1 89 93

2 92 97

Database unpivot function supports column to
row conversion.

StudentID Subject Score

1 Math 89

1 Chinese 93

2 Math 92

2 Chinese 97

10.2 Column to row transposition

330

The SQL query in Oracle:

select

*

from

StudentScore

unpivot

(Score for Subject in (Math, Chinese))

10.2 Column to row transposition

331

The SPL pivot@r() function supports column to row transposition:

StudentID Math Chinese

1 89 93

2 92 97

3 91 88

StudentID Subject Score

1 Math 89

1 Chinese 93

2 Math 92

2 Chinese 97

3 Math 91

3 Chinese 88

pivot@r()

10.2 Column to row transposition

332

The SPL script is as follows:

A1:Connect to database.

A2:Read StudentScore table.

A3:Use the @r option with the pivot function to implement column to row transposition.

A

1 =connect("oracle")

2 =A1.query("select * from StudentScore")

3 =A2.pivot@r(StudentID; Subject, Score; Math:"Math", Chinese:"Chinese")

10.2 Column to row transposition

333

Name Dept Area Salary

David Sales Beijing 8000

Daniel R&D Beijing 15000

Andrew Sales Shanghai 9000

Robert Sales Beijing 26000

Rudy R&D Shanghai 23000

… … … …

Dept Beijing Shanghai …

Sales 13000 11000 …

R&D 15000 14000 …

Calculate the average salary of each department in different areas. Now we don't know the
names of areas but want to convert them in the following format:

Dynamic row to column transposition: Names and number of transposed columns cannot be specified

in advance. It need to be determined dynamically according to the values of the original column.

For example, here's the employee table:

10.3 Dynamic row to column transposition

334

This is a row to column transposition. Name of the target transposed fields need to be extracted
from the original data. The SPL pivot function will automatically extract the names of the target
fields if their names are not specified.

SPL script is as follows:

The SPL script is as follows: A

1 =connect("db")

2
=A1.query("select Dept,Area,avg(Salary) as AvgSalary from Employee group

by Dept,Area")

3 =A2.pivot(Dept; Area, AvgSalary)

A1:Connect to data source.

A2:Get the average salaries grouped by department and area from the employee table.

A3: The pivot function performs row to column conversion, where the target fields are not specified.

10.3 Dynamic row to column transposition

335

Bidirectional transposition:Convert both rows to columns and columns to rows at the same

time.

The sales table classified by channel and recorded by date is as follows:

Day Online Store

20190101 2400 1863

20190102 1814 670

20190103 3730 1444

Category 20190101 20190102 20190103

Online 2400 1814 3730

Store 1863 670 1444

Desired result:

10.4 Bidirectional transposition

336

First, perform column to row transposition to convert Online and Store to values under the
new Category column.

Day Online Store

20190101 2400 1863

20190102 1814 670

20190103 3730 1444

Category 20190101 20190102 20190103

Online 2400 1814 3730

Store 1863 670 1444

Day Category Sales

20190101 Online 2400

20190101 Store 1863

20190102 Online 1814

20190102 Store 670

20190103 Online 3730

20190103 Store 1444

Then perform row to column transposition to convert the unique
values of the Day column to the new column names.

10.4 Bidirectional transposition

337

The SPL script is as follows:

A

1 =connect("db")

2 =A1.query("select * from Sales")

3 =A2.pivot@r(Day; Category, Sales)

4 =A3.pivot(Category; Day, Sales)

A3:Use pivot@r to perform column to row transposition to convert channel types (Online and

Store) to values of Category column.

A4:Use pivot to perform row to column transposition to convert the unique Day values to column

names.

10.4 Bidirectional transposition

338

For static transposition (the table structure after

transposition can be determined beforehand),

you can use SPL pivot and pivot@r functions.

For the dynamic transposition for which the table

structure after transposition cannot be decided

in advance, SPL pivot function is sometimes

incompetent. We will provide other solutions in

later chapters.

Pivot function is suitable for static

transposition

10.4 Bidirectional transposition

339

Convert rows into columns dynamically, generate column names dynamically based on record calculation, and finally fill all data into the

new table sequence.

According to the income details, calculate all incomes of different sources for each employee. The categories are automatically generated:

Name Source Income

David Salary 8000

David Bonus 15000

Daniel Salary 9000

Andrew Shares 26000

Andrew Sales 23000

Robert Bonus 13000

Category Source1 Income1 Source2 Income2

David Salary 8000 Bonus 15000

Daniel Salary 9000

Andrew Shares 26000 Sales 23000

Robert Bonus 13000

Employees may have different sources of income and we want the following result:

10.5 Row to column transposition with dynamic columns by filling into a table

340

We are not sure about the number of columns or even the names of columns after row to
column conversion. In this case, we can't use the pivot function, but need to code the dynamic
transposition.
The SPL script is as follows:

A B

1 =connect("db") =A1.query("select * from Income")

2 =B1.group(Name) =A2.max(~.len())

3 =create(Name, ${B2.("Source"+string(~)+", Income"+string(~)).concat@c()})

4 for A2 =A4. Name | A4.conj([Source, Income])

5 >A3.record(B4)

A3: Determine the number of columns according to the maximum number of members in a group after grouping,

dynamically generate column names, and create a table sequence.

A4~B5: Loop through each group, concatenate the name, income sources and income amounts into a sequence,

and add it to A3's table sequence.

10.5 Row to column transposition with dynamic columns by filling into a table

341

The key of dynamic transposition is to generate

the target data structure first. After the table

structure is determined, the data is put together

into records according to the data structure and

inserted into the target table. This idea is also

applicable to some static transpositions.

First generate target data structure for

dynamic transposition

10.5 Row to column transposition with dynamic columns by filling into a table

342

Convert multiple rows to multiple rows of another form: Merge and calculate multiple records

and generate multiple records in another form.

In the daily attendance information table, each card has 7 pieces of data every day. Get each

employee's in and out information in each day.

Per_Code in_out Date Time Type

1110263 1 2013-10-11 09:17:14.0000000 In

1110263 6 2013-10-11 11:37:00.0000000 Break

1110263 5 2013-10-11 11:38:21.0000000 Return

1110263 0 2013-10-11 11:43:21.0000000 NULL

1110263 6 2013-10-11 13:21:30.0000000 Break

1110263 5 2013-10-11 14:25:58.0000000 Return

1110263 2 2013-10-11 18:28:55.0000000 Out

Per_Code Date In Out Break Return

1110263 2013-10-11 9:17:14 18:28:55 11:37:00 11:38:21

1110263 2013-10-11 9:17:14 18:28:55 13:21:30 14:25:58

Every seven pieces of data are a group. We want to convert them into the following result:

10.6 Convert multiple rows to multiple rows of another form

343

Although the structure of the transposed table can be determined, it is very complex to
implement it with pivot. We can create the target data structure first, and then fill in the data.
The SPL script is as follows:

A B

1
=connect("db").query("select * from DailyTime order by

Per_Code,Date,Time")
=A1.group((#-1)\7)

2 =create(Per_Code,Date,In,Out,Break,Return)

3
=B2.conj([~.Per_Code,~.Date]|~.(Time).m([1,7,2,

3])|[~.Per_Code,~.Date]|~.(Time).m([1,7,5,6]))
>A2.record(A3)

A1:Query and sort data by code, date and time.

B1:Every seven records are put into a group.

A2:Create result table sequence.

A3:For each group, retrieve records in the order of 1,7,2,3,1,7,5,6 to get the whole-day records. Organize

values of each record into a sequence.

B3:Add values to the table sequence created by A2.

10.6 Convert multiple rows to multiple rows of another form

344

Row to column transposition by assigning values according to positions: Dynamically generate the data

structure of the target table sequence, and directly assign values according to their positions.

According to the user records, dynamically generate user columns and get users' weekly online status.

Then according to the related user table and record table, summarize the weekly user activities in 2018:

To display whether the user has a record of activity every week in 2018, as in the following table:

User

ID

Name

Record

ID

Date

Week User1 User2 User3

1 Yes No Yes

2 Yes Yes No

3 Yes No Yes

4 No Yes Yes

10.7 Transpose rows to columns by position-based value assignment

345

Create the target data structure first, and then fill in the data.

The SPL script is as follows:

A B

1
=connect("db").query("select t1.ID as ID, t1.Name as Name, t2.Date as Date from User t1, Record t2 where

t1.ID=t2.ID and year(t2.Date)=2018")

2 =A1.derive(interval@w("2018-01-01",Date)+1:Week) =A2.max(Week)

3 =A2.group(ID)
=B2.new(~:Week,${A3.("\"No\":"+Name).co

ncat@c()})

4 =A3.run(~.run(B3(Week).field(A3.#+1,"Yes")))

A1: Query user table and record table, and join them by user ID.

A2: Calculate the week number according to the date, and store it in the new field Week。

B2: Find the largest week number.

A3: Group by user ID.

B3: Create an empty table sequence according to the maximum weekly number, and assign default values "No" to each

day.

A4: For each piece of data in each group, locate the corresponding record in the target table through the weekly

sequence number, and replace the user value with "Yes".

10.7 Transpose rows to columns by position-based value assignment

346

Row to column transposition with inter-column calculations at the same time.

Get the summary table of monthly due amount of each user in 2014 based on user payment detail table.

ID customID name amount_payable due_date amount_paid pay_date

112101 C013 CA 12800 2014/02/21 12800 2014/12/19

112102 C013 CA 3500 2014/06/15 3500 2014/12/15

112103 C013 CA 2600 2015/03/21

Output the monthly payable amount in the specified year (such as 2014). If there is no data of the
current month, the payable amount of the current month is the value of the previous month.

10.8 Transpose rows to columns, and do inter-column calculations at the same time

name 1 2 3 4 5 6 7 8 9 10 11 12

CA 12800 12800 12800 12800 16300 16300 16300 16300 16300 16300 16300

…

347

Generate an empty result set first and then append data. The difference is that a series of calculations
is needed to get the data to be appended. SPL script is as follows:

A B

1 =file("Payment.txt").import@t().select(year(due_date)==2014)

2 =create(name,${12.concat@c()}) =A1.group(customID)

3 for B2 =12.(null)

4 >A3.run(B3(month(due_date))= amount_payable)

5 >B3.run(~+=~[-1])

6 =A2.record(B2.name|B3)

A1: Query records of 2014.

A2: Generate an empty result table sequence containing 12 months.

A3:Group by customID.

A3~B6:Loop through the groups, during which B4 sets the payable amount of the corresponding month.

B5 assigns null value to the previous month and perform the accumulation if there is new payable amount.

B6 inserts the record into the result table sequence.

10.8 Transpose rows to columns, and do inter-column calculations at the same time

348

Order

ID

Customer

Date

OrderDetail

OrderID

Number

Product

Amount

★

★

★

The numbers of detail records in the orderdetail table corresponding to each order record are variable.
Below is the desired table:

ID Customer Date Product1 Amount1 Product2 Amount2 Product3 Amount3

1 3 20190101 Apple 5 Milk 3 Salt 1

2 5 20190102 Beef 2 Pork 4

3 2 20190102 Pizza 3

Transpose rows into columns dynamically by inserting the sub table into the main table dynamically.

Based on the order table and orderdetail table, get the summary table of products purchased by each customer every day.

The relationship of order table and orderdetail table is that of the main and sub table. Each order record has multiple details

records, as shown below:

10.9 Dynamic transposition after the main and sub table join

349

The SPL script is as follows:

A B

1
=connect("db") .query("select * from OrderDetail left join Order on

Order.ID=OrderDetail.OrderID")

2 =A1.group(ID)
=A2.max(~.count()).("Product"+string(~)+","+"A

mount"+string(~)).concat@c()

3 =create(ID,Customer,Date,${B2})
>A2.run(A3.record([ID,Customer,Date]|~.([Pro

duct,Amount]).conj()))

A1:Join the order table and the order detail table

A2:Group by order ID.

B2~A3:According to the maximum number of members in each group, dynamically generate column names

and create an empty table sequence.

B3:Loop members in each group, dynamically put together the desired data and add them to the table sequence

created by A3.

10.9 Dynamic transposition after the main and sub table join

350

Students

stu_id

stu_name

class_id

Exam

stu_id

subject

score

★

The desired summary table is as follows:

stu_id stu_name Chinese_score Math_score total_score Chinese_retest Math_retest

1 Ashley 80 77 157
2 Rachel 58 67 125 78
3 Emily 85 56 141 82

Retest

stu_id

subject

score

Perform dynamic row to column conversion based on the join of multiple related tables. Generate

multiple columns dynamically according to field values, and then fill in the result of associated to them.

Based on the Students table, Exam table and Retest table, get the summary table consisting of score of

each subject, total score and retest score for each student.

10.10 Dynamic row to column transposition after multi-table join

351

The SPL script is as follows:

A B

1
$()select t1.stu_id stu_id,t1.stu_name stu_name,t2.subject subject,t2.score score1,t3.score

score2 from Students.txt t1 left join Exam.txt t2 on t1.stu_id=t2.stu_id left join Retest.txt t3 on

t1.stu_id=t3.stu_id and t2.subject=t3.subject order by t1.stu_id,t2.subject

2 =A1.group(stu_id) =A1.group(subject)

3
=create(stu_id,stu_name,${(B2.(~.subject+"_score")|"total_score"|B2.(~.subject+"_retest

")).concat@c()})

4 >A2.run(A3.record([stu_id,stu_name]|B2.(~(A2.#).score1)|A2.~.sum(score1)|B2.(~(A2.#).score2)))

10.10 Dynamic row to column transposition after multi-table join

A1:Join the Student table, the Exam table and the Retest table, sort the result by student id and subject. The score

of exam is score1 and the score of retest is score2.

A2,B2:Group by student id and subject respectively.

A3:According to the subjects, dynamically generate column names and create an empty table sequence.

A4:Loop members in student scores group, dynamically put together the desired data and add them to the table

sequence created by A3.

352

First, join data tables into a single table through

associative relationship. The next steps are

similar to the transpositions introduced earlier.

There are rich functions for doing calculations

over SPL table sequences. They can meet most

of the business computing requirements.

Perform the join first for an inter-table

join transposition

Summary of inter-table join transposition

353

List the names and population of each city with a population of more than 2 million in
Europe and Africa in a separate column group (each column group is sorted in descending
order). The expected result is as follows:

Continent Country City Population

Africa Egypt Cairo 6789479

Asia China Shanghai 24240000

Europe Britain London 7285000

… … … …

Europe City Population Africa City Population

Moscow 8389200 Cairo 6789479

London 7285000 Kinshasa 5064000

St Petersburg 4694000 Alexandria 3328196

To present data in a column-layout is to rearrange a table from the vertical layout into a layout of two or more

column groups.

Here is a world urban population table:

10.11 Transposition in column-layout

354

The idea is to create the target data structure first, and then fill data in it.
The SPL script is as follows:

A B

1
=connect("db").query("select * from World where Continent in('Europe', 'Africa') and Population

>= 2000000")

2 =A1.select(Continent:"Europe") =A1.select(Continent:"Africa")

3
=create('Europe City',Population,'Africa City',

Population)

=A3.paste(A2.(City),A2.(Population),B2.(City),B

2.(Population))

A1: Connect to the database and retrieve records of cities in Europe and Africa with more than 2 million population.

A2~B2:Get records of Europe and Africa respectively.

A3: Create an empty table sequence according to the target structure.

B3: Paste the sequence of values directly to the corresponding column using the table sequence's paste function.

10.11 Transposition in column-layout

355

SPL
COOKBOOK

Recursion

Chapter 11

356

11.1 Recursively search single references

ID ORG_NAME PARENT_ID

1 Head Office 0

2 Beijing Branch Office 1

3 Shanghai Branch Office 1

4 Chengdu Branch Office 1

5 Beijing R&D Center 2

… … …

Recursively search for all levels of references of the specified field in the specified record

after a table is joined with itself.

From the organizational structure table of a company, query all the superior organizations

of Beijing market research team.

357

11.1 Recursively search single references

A6

Value

Head Office / Beijing Branch Office / Beijing Marketing Department / Beijing Market Research Team

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Organization") /Query organization table

3 >A2.switch(PARENT_ID,A2:ID)
/Map the foreign key Parent_ID to the corresponding record
to perform a self-join

4
=A2.select@1(ORG_NAME=="Beijing Market
Research Team")

/Select the record where Beijing market research team is
located

5 =A4.prior(PARENT_ID) /Use the prior function to find the superior organizations

6 =A5.rvs().(ORG_NAME).concat(" / ")
/Use rvs function to arrange the superior organizations top-
down

SPL is as follows, in which the rvs() function is used to reverse a sequence:

358

11.2 Traverse all files in the directory

Recursively traverse all the files in the specified directory.

A primary school investigates the terminals students use in online learning. Count the proportion of each type of

terminal.

ID STUDENT_NAME TERMINAL

1 Rebecca Moore Phone

2 Ashley Wilson Phone,PC,Pad

3 Rachel Johnson Phone,PC,Pad

4 Emily Smith PC,Pad

5 Ashley Smith PC

6 Matthew Johnson Phone

7 Alexis Smith Phone,PC

8 Megan Wilson Phone,PC,Pad

… … …

359

11.2 Traverse all files in the directory

A B C
1 =directory@ps("D:/Primary School") /Recursively traversing directories, to listi all files

2 >totalCount=0
/Define a variable totalCount to store the total
number of records

3 for A1 =file(A3).xlsimport@t()
/Import the Excel file of each class's questionnaire
in loop

4 =B3.conj(TERMINAL.split@c())|B4
/Split terminals by commas and merge them into
B4's sequence

5 >totalCount+=B3.len()
/Add the number of students in each class to
totalCount

6 =B4.groups(~:TERMINAL;count(~)/totalCount:PERCENTAGE)
/Group and summarize B4's sequence and
calculate the percentage of each type of terminal

SPL is as follows, in which the directory@s() function is used to recursively search for files:

A6B4

Member

Phone

Phone

PC

…

groups
TERMINAL PERCENTAGE

PC 0.7

Pad 0.567

Phone 0.933

A1

Member

D:\Primary School\Grade1\Class1\Investigation.xlsx

D:\Primary School\Grade1\Class2\Investigation.xlsx

D:\Primary School\Grade1\Class3\Investigation.xlsx

…

360

11.3 Recursively search all references by loop

Recursively search for all levels of references of the specified field in all records after a table is

joined with itself.

In the organization table of a company, query the level of each department.

ID ORG_NAME PARENT_ID

1 Head Office 0

2 Beijing Branch Office 1

3 Shanghai Branch Office 1

4 Chengdu Branch Office 1

5 Beijing R&D Center 2

… … …

361

11.3 Recursively search all references by loop

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Organization") /Query organization table

3 >A2.switch(PARENT_ID,A2:ID)
/Map foreign key Parent_ID to the corresponding record to
perform a self-join

4
=A2.new(ID,ORG_NAME,~.prior(PARENT_ID).le
n()-1:LEVEL)

/Create a new table consisting of ID, department names,
and levels. The level is calculated by recursively finding the
number of levels of the referenced records through the
prior function.

SPL is as follows, in which the prior function is used to recursively search references:

362

A2

11.3 Recursively search all references by loop

ID ORG_NAME PARENT_ID

1 Head Office 0

2 Beijing Branch Office 1

3 Shanghai Branch Office 1

4 Chengdu Branch Office 1

5 Beijing R&D Center 2

6 Beijing Marketing Department 2

7 … …

ID ORG_NAME PARENT_ID

1 Head Office （null）

2 Beijing Branch Office [1,Head Office,]

3 Shanghai Branch Office [1,Head Office,]

4 Chengdu Branch Office [1,Head Office,]

5 Beijing R&D Center [2,Beijing Bra…]

6 Beijing Marketing Department [2,Beijing Bra…]

7 … …

Self-join

ID ORG_NAME PARENT_ID

2 Beijing Branch Office [1,Head Office,]

ID ORG_NAME PARENT_ID

1 Head Office （null）

363

A4

11.3 Recursively search all references by loop

ID ORG_NAME LEVEL

1 Head Office 0

2 Beijing Branch Office 1

3 Shanghai Branch Office 1

4 Chengdu Branch Office 1

5 Beijing R&D Center 2

6 Beijing Marketing Department 2

7 … …

ID ORG_NAME ~.prior(PARENT_ID)

1 Head Office （null）

2 Beijing Branch Office [1,Head Office,]

3 Shanghai Branch Office [1,Head Office,]

4 Chengdu Branch Office [1,Head Office,]

5 Beijing R&D Center [2,Beijing Branch O…]

6 Beijing Marketing Department [2,Beijing Branch O…]

7 … …

ID ORG_NAME PARENT_ID

6 Beijing Marketing Department [2,Beijing Branch O…]

2 Beijing Branch Office [1,Head Office,]

1 Head Office （null）

364

11.4 Recursively search references until the specified value

Search all levels of references recursively until the specified value after a table is joined with itself.

In the organization table of a company, query the subordinate organizations of Beijing Branch and list

the superior organizations of each of them.

ID ORG_NAME PARENT_ID

1 Head Office 0

2 Beijing Branch Office 1

3 Shanghai Branch Office 1

4 Chengdu Branch Office 1

5 Beijing R&D Center 2

… … …

365

11.4 Recursively search references until the specified value

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Organization") /Query organization table

3 >A2.switch(PARENT_ID,A2:ID)
/Map foreign key Parent_ID to the corresponding

record to perform a self-join

4 =A2.select@1(ORG_NAME=="Beijing Branch Office") /Select the record of Beijing Branch

5
=A2.new(ID,ORG_NAME,~.prior(PARENT_ID,A4)
:PARENT)

/Create a new table consisting of ID, department
name, and parent. The parent is obtained by
recursively searching for the records under Beijing
branch through prior function.

6 =A5.select(PARENT!=null)
/Select the members whose parent exists,
otherwise they are not subordinates of Beijing
Branch.

7
=A6.run(PARENT=PARENT.(PARENT_ID.ORG_NAME).c
oncat@c())

/Concatenate all the parent names in the parent
field, separated by commas.

SPL is as follows, in which the prior(F,r') function is used to recursively search references until

the specified value:

366

A5

11.4 Recursively search references until the specified value

ID ORG_NAME PARENT

1 Head Office （null）

2 Beijing Branch Office []

3 Shanghai Branch Office （null）

4 Chengdu Branch Office （null）

5 Beijing R&D Center [[5,Beijing R&D Center,]]

6 Beijing Marketing Department [[5,Beijing Marketing Department,]]

7 Beijing AI R&D Department [[7,Beijing AI R&D Department,],[5,Beijing Marketing Department,]]

8 Beijing Internet R&D Department [[8, Beijing Internet R&D Department,],[5,Beijing R&D Center,]]

9 … …

ID ORG_NAME PARENT_ID

8 Beijing Internet R&D Department [5,Beijing R&D Center,]

5 Beijing R&D Center [2,Beijing Branch Office,]

367

11.4 Recursively search references until the specified value

A6 ID ORG_NAME PARENT

2 Beijing Branch Office []

5 Beijing R&D Center [[5,Beijing R&D Center,]]

6 Beijing Marketing Department [[5,Beijing Marketing Department,]]

7 Beijing AI R&D Department [[7,Beijing AI R&D Department,],[5,Beijing Marketing Department,]]

8 Beijing Internet R&D Department [[8, Beijing Internet R&D Department,],[5,Beijing R&D Center,]]

9 … …

A7 ID ORG_NAME PARENT

2 Beijing Branch Office

5 Beijing R&D Center Beijing Branch Office

6 Beijing Marketing Department Beijing Branch Office

7 Beijing AI R&D Department Beijing R&D Center,Beijing Branch Office

8 Beijing Internet R&D Department Beijing R&D Center,Beijing Branch Office

9 Beijing Internet Interface R&D department Beijing Internet R&D Department,Beijing R&D Center,Beijing

Branch Office

10 Beijing Market Research Team Beijing Marketing Department,Beijing Branch Office

368

11.5 Search the upper level reference

Only search for the upper level reference of a record after a table is joined with itself.

In the Chinese administrative division table, query the name of the superior region of each

administrative region.

ID NAME PARENT_ID

1 China 0

11 Beijing 1

12 Tianjin 1

13 Hebei 1

… … …

1301 Shijiazhuang 13

1302 Tangshan 13

… … …

369

11.5 Search the upper level reference

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from ChinaRegion") /Query ChinaRegion table

3 >A2.switch(PARENT_ID,A2:ID)
/Map foreign key Parent_ID to the corresponding record to
perform a self-join

4 =A2.nodes(PARENT_ID)
/Use the nodes function to find the upper level reference of
a record

5
=A4.new(ID,NAME,PARENT_ID.NAME:PARENT_
NAME)

/Create a table sequence consisting of ID, name and upper
level region name

SPL is as follows, in which the P.nodes(F) function is used to find the upper level reference of a

record:

370

A4 A5

11.5 Search the upper level reference

ID NAME PARENT_ID

1 China （null）

11 Beijing [1,China,]

12 Tianjin [1,China,]

13 Hebei [1,China,]

… … …

1301 Shijiazhuang [13,Hebei,]

1302 Tangshan [13,Hebei,]

1303 Qinhuangdao [13,Hebei,]

… … …

130102 Changan District [1301,Shijiazhuang,]

130104 Qiaoxi District [1301,Shijiazhuang,]

130105 Xinhua District [1301,Shijiazhuang,]

… … …

ID NAME PARENT_NAME

1 China （null）

11 Beijing China

12 Tianjin China

13 Hebei China

… … …

1301 Shijiazhuang Hebei

1302 Tangshan Hebei

1303 Qinhuangdao Hebei

… … …

130102 Changan District Shijiazhuang

130104 Qiaoxi District Shijiazhuang

130105 Xinhua District Shijiazhuang

… … …

371

11.6 Find records with the specified value in the reference chain with the parent value listed

Get records with specified value in the reference chain and list the upper level value.

In the Chinese administrative division table, query the subordinate administrative regions of

Hebei Province.

ID NAME PARENT_ID

1 China 0

11 Beijing 1

12 Tianjin 1

13 Hebei 1

… … …

1301 Shijiazhuang 13

1302 Tangshan 13

… … …

372

11.6 Find records with the specified value in the reference chain with the parent value listed

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from ChinaRegion") /Query ChinaRegion table

3 >A2.switch(PARENT_ID,A2:ID)
/Map foreign key Parent_ID tothe corresponding record to
perform a self-join

4 =A2.select@1(name=="Hebei") /Select the record of Hebei province

5 =A2.nodes(PARENT_ID,A4)
/Use the nodes function to recursively search references
until PARENT_ID points to Hebei Province

6
=A5.new(ID,NAME,PARENT_ID.NAME:PARENT_
NAME)

/Create a table sequence consisting of ID, name and upper
level region name.

SPL is as follows, in which the P.nodes(F,r) function is used to get the records with the

specified value in the reference chain:

373

A5 A6

11.6 Find records with the specified value in the reference chain with the parent value listed

ID NAME PARENT_ID

1301 Shijiazhuang [13,Hebei,]

1302 Tangshan [13,Hebei,]

1303 Qinhuangdao [13,Hebei,]

1304 Handan [13,Hebei,]

1305 Xingtai [13,Hebei,]

… … …

130102 Changan District [1301,Shijiazhuang,]

130104 Qiaoxi District [1301,Shijiazhuang,]

130105 Xinhua District [1301,Shijiazhuang,]

130107 Jingxing mining area [1301,Shijiazhuang,]

130108 Yuhua District [1301,Shijiazhuang,]

130109 Gaocheng District [1301,Shijiazhuang,]

… … …

ID NAME PARENT_NAME

1301 Shijiazhuang Hebei

1302 Tangshan Hebei

1303 Qinhuangdao Hebei

1304 Handan Hebei

1305 Xingtai Hebei

… … …

130102 Changan District Shijiazhuang

130104 Qiaoxi District Shijiazhuang

130105 Xinhua District Shijiazhuang

130107 Jingxing mining area Shijiazhuang

130108 Yuhua District Shijiazhuang

130109 Gaocheng District Shijiazhuang

… … …

374

11.7 Search for leaf records

Only search all leaves (records not referenced by other records) after a table is joined with itself.

In the Chinese administrative division table, query the subordinate districts and counties of Hebei Province.

ID NAME PARENT_ID

1 China 0

11 Beijing 1

12 Tianjin 1

13 Hebei 1

… … …

1301 Shijiazhuang 13

1302 Tangshan 13

… … …

375

11.7 Search for leaf records

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from ChinaRegion") /Query ChinaRegion table

3 >A2.switch(PARENT_ID,A2:ID)
/Map foreign key Parent_ID to the corresponding record to
perform a self-join

4 =A2.select@1(name=="Hebei") /Select the record of Hebei province

5 =A2.nodes@d(PARENT_ID,A4)

/Use the nodes function to recursively search references
until PARENT_ID points to Hebei Province; the @d option
gets leaves only. In this case, all districts and counties will be
selected

6
=A5.new(ID,NAME,PARENT_ID.NAME:PARENT_
NAME)

/Create a table sequence consisting of ID, name and upper
level region name.

SPL is as follows, in which the P.nodes@d(F,r) function is used to recursively search all leaves:

376

A5 A6

11.7 Search for leaf records

ID NAME PARENT_ID

130102 Changan District [1301,Shijiazhuang,]

130104 Qiaoxi District [1301,Shijiazhuang,]

130105 Xinhua District [1301,Shijiazhuang,]

130107 Jingxing mining area [1301,Shijiazhuang,]

130108 Yuhua District [1301,Shijiazhuang,]

130109 Gaocheng District [1301,Shijiazhuang,]

130110 Luquan District [1301,Shijiazhuang,]

130111 Luancheng District [1301,Shijiazhuang,]

130121 Jingxing County [1301,Shijiazhuang,]

130123 Zhengding County [1301,Shijiazhuang,]

130125 Xingtang County [1301,Shijiazhuang,]

130621 Lingshou County [1301,Shijiazhuang,]

… … …

ID NAME PARENT_NAME

130102 Changan District Shijiazhuang

130104 Qiaoxi District Shijiazhuang

130105 Xinhua District Shijiazhuang

130107 Jingxing mining area Shijiazhuang

130108 Yuhua District Shijiazhuang

130109 Gaocheng District Shijiazhuang

130110 Luquan District Shijiazhuang

130111 Luancheng District Shijiazhuang

130121 Jingxing County Shijiazhuang

130123 Zhengding County Shijiazhuang

130125 Xingtang County Shijiazhuang

130621 Lingshou County Shijiazhuang

… … …

377

11.8 Find all upper level references

Find all upper level references after a table is joined with itself.

In the Chinese administrative division table, list all the superior regions of each administrative region.

The output for Shijiazhuang, for instance, is China, Hebei, Shijiazhuang.

ID NAME PARENT_ID

1 China 0

11 Beijing 1

12 Tianjin 1

13 Hebei 1

… … …

1301 Shijiazhuang 13

1302 Tangshan 13

… … …

378

11.8 Find all upper level references

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from ChinaRegion") /Query ChinaRegion table

3 >A2.switch(PARENT_ID,A2:ID)
/Map foreign key Parent_ID to the corresponding record to
perform a self-join

4 =A2.nodes@p(PARENT_ID)
/Use @p option with the nodes function to recursively find
all upper level references

5 =A4.run(~=~.(NAME).concat@c())
/Concatenate names of the upper level references,
separated by commas

SPL is as follows, in which the P.nodes@p(F,r) function is used to find all upper level references:

379

A4 A5

11.8 Find all upper level references

Member

[[1,China,]]

[[1,China,],[11,Beijing,]]

[[1,China,],[12,Tianjin,]]

[[1,China,],[13,Hebei,]]

…

[[1,China,],[13,Hebei,],[1301,Shijiazhuang,]]

[[1,China,],[13,Hebei,],[1302,Tangshan,]]

[[1,China,],[13,Hebei,],[1303,Qinhuangdao]]

…

[[1,China,],[13,Hebei,],[1301,Shijiazhuang,],…]

[[1,China,],[13,Hebei,],[1301,Shijiazhuang,],…]

[[1,China,],[13,Hebei,],[1301,Shijiazhuang,],…]

…

Member

China

China,Beijing

China,Tianjin

China,Hebei

…

China,Hebei,Shijiazhuang

China,Hebei,Tangshan

China,Hebei,Qinhuangdao

…

China,Hebei,Shijiazhuang,Changan District

China,Hebei,Shijiazhuang,Qiaoxi District

China,Hebei,Shijiazhuang,Xinhua District

…

380

11.9 Hanoi Tower problem

A B C

Recursively call function to solve Hanoi Tower problem.

The Hanoi Tower problem is a classical recursive problem. The objective of the puzzle is to move all

the disks on rod A to rod C, with the original order kept. Only one disk can be moved at a time, and

always keep a smaller disk on top of a larger one.

381

11.9 Hanoi Tower problem

A B C D

1 func /Define a function

2 if(A1==1)
>output("move disk " + string(A1) + "
from " + B1 + " to " + D1)

/Move it to C when there is only one disk

3 else >func(A1,A1-1,B1,D1,C1) /Move n-1 disks on A to B

4
>output("move disk " + string(A1) + "
from " + B1 + " to " + D1)

/Move the bottom disk on A to C

5 >func(A1,A1-1,C1,B1,D1) /Move n-1 disks on B to A

6 >func(A1,5,"A","B","C")
/The function has four parameters: number of disks
(also the names), initial rod, intermediate rod and
target rod

The disks are named 1 to n from small to large. We always treat the n disks as two groups: the nth disk and

the other n-1 ones. Move n-1 disks to rod B, the nth disk to rod C, and then the n-1 disks to rod C.

The SPL is as follows, where func(c,…) is used to perform the recursive operation:

382

11.9 Hanoi Tower problem

move disk 1 from A to C

move disk 2 from A to B

move disk 1 from C to B

move disk 3 from A to C

move disk 1 from B to A

move disk 2 from B to C

move disk 1 from A to C

move disk 4 from A to B

move disk 1 from C to B

move disk 2 from C to A

move disk 1 from B to A

move disk 3 from C to B

move disk 1 from A to C

move disk 2 from A to B

move disk 1 from C to B

move disk 5 from A to C

move disk 1 from B to A

move disk 2 from B to C

move disk 1 from A to C

move disk 3 from B to A

move disk 1 from C to B

move disk 2 from C to A

move disk 1 from B to A

move disk 4 from B to C

move disk 1 from A to C

move disk 2 from A to B

move disk 1 from C to B

move disk 3 from A to C

move disk 1 from B to A

move disk 2 from B to C

move disk 1 from A to C

When there are 5 disks on rod A,

the output result is as shown on

the right:

383

11.10 Pirate treasure division problem

Recursively call function to solve the pirate treasure division problem.

The puzzle is like this:

Five pirates snatched 100 gold coins. They propose plans of dividing the coins by drawing lots: first, No. 1 put

forwards the distribution plan, and then five people vote. More than half of the votes is needed to approve the plan,

or he will be thrown into the sea to feed sharks, and so on.

Pirate 2's plan Pirate 3's plan Pirate 4's plan
Pirate 1's plan Pirate 5's plan

When there are only two pirates, pirate 5 will veto any plan pirate 4 proposes and pocket 100 gold coins. So in order to protect his life,

pirate 4 will unconditionally agree with pirate 3. Knowing the idea of pirate 4, the greedy pirate 3 will surely give the [100,0,0]

distribution plan. This logic also applies to any of the other pirates.

Pocketed[100,0,0] Agree to plan 3？？？？？？

384

11.10 Pirate treasure division problem

A B C D E
1 func

2 if(A1==2) return [-1,B1]
/When there are only two
pirates

/The last pirate takes all

3 =func(A1,A1-1,B1) /Use func() function to recursively calculate the plan that the other pirates will adopt after I am rejected

4 =B3.psort() =A1/2 /Sort the next plans /How many pirates are needed to support me

5 for B4.len() if (B5<=C4) =B3(B4(B5))+=1
/Strive for the support of the pirates with the least
distribution and give 1 more coin

6 >B1-=D5
/Deduct the allocated gold coins from the total, and
the rest are mine

7 else >B3(B4(B5))=0 /Other pirates are allocated none

8 return B1 | B3 /Return my remaining gold coins and the next modified plan, which is my allocation plan.

9 =func(A1,5,100) /Execute func() function, where the parameters are 5 pirates and 100 gold coins

The SPL is as follows, where func(c,…) is used to perform the recursive operation:

A9 Member

97

0

1

2

0

385

11.11 Traverse the directories to summarize all the files

16 …

17 Middleware for report source data computing

18 …

Middleware for report source data computing

SPL parsing and exporting Excel

SQL Headaches Therapies – For Loop Operations

The skill of updating database with esProc

…

Result.txt after summary:

Sample of the text file:s

Traverse the directories and recursively call the script to summarize all the files.

Traverse all text files in the specified directory and its subdirectories, and append the 17th line in each file to a target

file.

386

11.11 Traverse the directories to summarize all the files

A B C
1 =directory@p(path) /List files in the current directory

2 =A1.(file(~).cursor@s()) /Open file cursor in loop

3 =A2.((~.skip(16),~.fetch@x(1))) /Skip 16 lines in each file cursor to get line 17

4 =A3.union() /Union the fetched records

5 >file("result.txt").export@a(A4) /Append the results to the result.txt file

6 =directory@dp(path) /List subdirectories in the current directory

7 if A6.len()==0 return
/If there is no subdirectory, the program
returns result

8 else =A6.(call("readfile.dfx",~))
/If there are subdirectories, execute the script
recursively

First define a parameter: ID Name Value Remarks

1 path File directory

The following script is used to read the specified line of each of the files and export it to a text file. It is saved as readfile.dfx. SPL is as follows:

Use call() function to execute the edited readfile.dfx. SPL is as follows:

A B

1 =call("readfile.dfx","D:/Documents")
/Execute the cellset program by specifying the directory with
parameter

The recursive traversal of directories and cursor-type file reading almost uses no memory. It is suitable for processing a large number of files

and big data.

387

SPL
COOKBOOK

Using structured text data

Chapter 12

388

Get records that meet the specified condition in a text file.

Find scores of students in class 10 in students_scores.txt.

Text file content:

12.1 Filter small files

CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

1 Allen Ashley 98 97 97

1 Allen Brandon 93 76 78

……

389

A B

1 =file("E:/txt/students_scores.txt").import@t() /@t option reads the first line as the title; the separator by default is "\t"

2 =A1.select(CLASS==10) /Select records of students in class 10, which is calculated immediately

A2's result:

12.1 Filter small files

SPL script is as follows:

CLASS Name English Chinese Math

10Adams Ashley 89 49 91

10Adams Kayla 85 74 45

10Allen Danielle 62 77 88

… … … … …

390

File content:

12.2 Read certain fields in a text file

Read data of certain fields from a text file.

CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

1 Allen Ashley 98 97 97

1 Allen Brandon 93 76 78

……

391

SPL code

SPL output

A

1 =file(path).import@t(CLASS,Chinese)

2 =file(path).import@t(#1,#4)

12.2 Read certain fields in a text file

CLASS Chinese

1 31

1 85

1 87

… …

392

Separated by "," Separated by"|"

File content:

12.3 Read data in a text file using specified separator

From a text file with separator specified, read structured data using the specified separator.

CLASS,NAME,English,Chinese,Math

1,Adams Brooke,63,31,69

1,Adams Hannah,89,85,79

1,Adams Jonathan,88,87,91

…

CLASS|NAME|English|Chinese|Math

1|Adams Brooke|63|31|69

1|Adams Hannah|89|85|79

1|Adams Jonathan|88|87|91

…

393

A

1 =file(path).import@t(;,",")

2 =file(path).import@tc()

A

1 =file(path).import@t(;,"|")

SPL code

SPL output

12.3 Read data in a text file using specified separator

CLASS Name English Chinese Math

1Adams Brooke 63 31 69

1Adams Hannah 89 85 79

1Adams Jonathan 88 87 91

… … … … …

394

Perform SUM aggregate over a small file.

Calculate the total score of Chinese based on students_scores.csv .

Text file content:

12.4 Aggregate data in a small file to get sum

CLASS,NAME,English,Chinese,Math

1,Adams Brooke,63,31,69

1,Adams Hannah 89,85,79

1,Adams Jonathan,88,87,91

1,Allen Ashley,98,97,97

1,Allen Brandon,93,76,78

……

395

A B

1
=file("E:/txt/students_scores.csv").import@t(;,",

")
/Specify "," as the separator

2 =A1.sum(Chinese) /Get total of Chinese scores

A2's result

12.4 Aggregate data in a small file to get sum

SPL script is as follows:

Value

181025

396

Perform inter-column calculation in a text file.

Calculate the total score of each student based on students_scores.txt.

Text file content:

12.5 Inter-column calculation in a small file

CLASS|NAME|English|Chinese|Math

1|Adams Brooke|63|31|69

1|Adams Hannah|89|85|79

1|Adams Jonathan|88|87|91

…

397

A B

1 =file("E:/txt/students_scores.txt").import@t(;,"|") /Specify "|" as the separator

2 =A1.derive(English+Chinese+Math:total_score) /Add a column of total score

A2's result

12.5 Inter-column calculation in a small file

SPL script is as follows:

CLASS Name English Chinese Math total_score

1Adams Brooke 63 31 69 163

1Adams Hannah 89 85 79 253

1Adams Jonathan 88 87 91 266

… … … … … …

398

Perform comprehensive calculations using text file data.

Calculate the average Chinese score of all students and that of the students who passed in

Chinese in class 10 based on students_scores.txt.

Text file content:

12.6 Perform comprehensive calculations using small text files

CLASS|NAME|English|Chinese|Math

1|Adams Brooke|63|31|69

1|Adams Hannah|89|85|79

1|Adams Jonathan|88|87|91

…

399

A B

1 =file("E:/txt/students_scores.txt").import@t(CLASS,Chinese;,"|") /Read Class field and Chinese field

2 =A1.select(CLASS==10) /Select records of Class 10

3 =[A2.avg(Chinese),A2.avg(if(Chinese>=60,Chinese))] /Calculate the two types of average

12.6 Perform comprehensive calculations using small text files

SPL script is as follows:

A3 Member

62.667

78.706

400

File content:

12.7 Read untitled structured text data

Read structured data in an untitled text file.

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

1 Allen Ashley 98 97 97

1 Allen Brandon 93 76 78

1 Baker Danielle 83 40 95

……

401

There is no title

A

1 =file(path).import()

SPL code

SPL output

12.7 Read untitled structured text data

_1 _2 _3 _4 _5

1Adams Brooke 63 31 69

1Adams Hannah 89 85 79

1Adams Jonathan 88 87 91

… … … … …

402

Specify the data type and format to read a text file. For example, using the non-default date

format.

File content:

12.8 Read a text file using specified data type and format

user_id,gender,age,insertdate

483833,M,19,2018/12/11

156772,M,31,2018/2/13

173388,M,34,2018/8/21

…

403

user_id gender age insertdate

483833 M 192018-12-11

156772 M 312018-02-13

173388 M 342018-08-21

… … … …

user_id gender age insertdate

483833 M 192018-12-11

156772 M 312018-02-13

173388 M 342018-08-21

… … … …

user_id gender age insertdate

483833M 192018/12/11

156772M 312018/2/13

173388M 342018/8/21

… … … …

Data type of user_id: string; Date format: yyyy/M/d

A

1
=file(path).import@t(user_id:string,gender,age,ins

ertdate:date:"yyyy/M/d")

SPL code

SPL output

A

1 =file(path).import@t()

2
=A2.run(user_id=string(user_id),insertdate=date(i

nsertdate,"yyyy/M/d"))
Read normally

The correct

way of reading

a file in SPL

Read correctly

Read normally，and

then modify with

run function

Modify with run function

12.8 Read a text file using specified data type and format

404

File content:

12.9 Read structured text data according to the specified character set

Read structured data in a text file according to the specified character set.

user_id,reg_mon,gender,age,cell_province,id_province,id_city,insertdate

483833,2017-04,男,19,c29,c26,c26241,2018-12-11

156772,2016-05,男,31,c11,c11,c11159,2018-02-13

173388,2016-05,男,34,c02,c02,c02182,2018-08-21

…

405

SPL code

SPL output

12.9 Read structured text data according to the specified character set

user_id reg_mon gender age cell_province id_province id_city insertdate

4838332017-04 男 19c29 c26 c26241 2018-12-11

1567722016-05 男 31c11 c11 c11159 2018-02-13

1733882016-05 男 34c02 c02 c02182 2018-08-21

… … … … … … … …

user_id reg_mon gender age cell_province id_province id_city insertdate

4838332017-04 □□ 19c29 c26 c26241 2018-12-11

1567722016-05 □□ 31c11 c11 c11159 2018-02-13

1733882016-05 □□ 34c02 c02 c02182 2018-08-21

… … … … … … … …

A

1 =file(path).import@tc()

A

1 =file(path:"utf-8").import@tc()

Normal reading

Reading with specified

character set

Normal

reading

Reading with specified

character set

406

Sort the structured data in a text file by the values of a certain field in ascending order.

Sort records by Chinese score in ascending order based on students_score.txt.

12.10 Sort data in a small text file in ascending order

File content: CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

1 Allen Ashley 98 97 97

1 Allen Brandon 93 76 78

……

407

A B

1 =file("E:/txt/students_score.txt").import@t() /Read file

2 =A1.sort(Chinese) /Sort by Chinese in ascending order

12.10 Sort data in a small text file in ascending order

SPL script is as follows:

A2's result Name Math Chinese English

Hannah 90 76 95

Tyler 87 78 93

Zachary 75 81 85

… … … …

408

Sort the structured data in a text file in descending order.

Sort records by total score in descending order base on students_score.txt.

12.11 Sort data in a small text file in descending order

Text file content: CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

1 Allen Ashley 98 97 97

1 Allen Brandon 93 76 78

……

409

A B

1 =file("E:/txt/students_score.txt").import@t() /Read file

2 =A1.sort@z(Math+English+Chinese) /Sort by total score in descending order

12.11 Sort data in a small text file in descending order

SPL script is as follows:

A2's result Name Math Chinese English

Allen Ashley 98 97 97

Lewis Antony 93 92 94

Adams Jonathan 88 87 91

… … … …

410

Sort structured data in a text file by multiple fields in specified order.

Sort records by class in ascending order and by total score in descending order based on

students_scores.txt.

12.12 Sort structured data in a small text file by multi fields in specified order

Text file content: CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

1 Allen Ashley 98 97 97

1 Allen Brandon 93 76 78

……

411

A B

1 =file("E:/txt/students_scores.txt").import@t() /Read file

2 =A1.sort(CLASS,-(English+Chinese+Math))
/Sort records by class in ascending order, and by total

score in descending order

12.12 Sort structured data in a small text file by multi fields in specified order

SPL script is as follows:

A2's result Name Math Chinese English

Allen Ashley 98 97 97

Lewis Antony 93 92 94

Adams Jonathan 88 87 91

… … … …

412

Perform grouping & aggregation over records in a small text file.

Count the total number of logins in each province based on user_info_reg.csv.

12.13 Perform grouping & aggregation over a small file

Data in the file:

user_id reg_mon age cell_province id_province id_city insertdate reg_time

4838332017-04 19c29 c26 c26241 2018-12-11 56558

1567722016-05 31c11 c11 c11159 2018-02-13 81617

… … … … … … … …

413

A B

1 =file("E:/txt/user_info_reg.csv").import@tc() /Read file

2 =A1.groups(id_province;count(~):cnt) /Perform count after grouping

A2's result

12.13 Perform grouping & aggregation over a small file

SPL script is as follows:

id_province cnt

c01 27202

c02 61735

c03 14433

… …

414

Perform filtering after records in a text file are grouped.

Find the users whose total login time is less than 1000 minutes based on user_info_reg.csv.

12.14 Perform filter after grouping over a small file

Data in the file:

user_id reg_mon age cell_province id_province id_city insertdate reg_time

4838332017-04 19c29 c26 c26241 2018-12-11 56558

1567722016-05 31c11 c11 c11159 2018-02-13 81617

… … … … … … … …

415

A B

1 =file("E:/txt/user_info_reg.csv").import@tc() /Read file

2 =A1.groups(user_id;sum(reg_time):total_reg) /Perform sum after grouping by user_id

3 =A2.select(total_reg<1000) /Filter

12.14 Perform filter after grouping over a small file

Results A3:

SPL script is as follows:

user_id total_reg

41 512

68 130

90 486

… …

416

Query text file data to remove duplicates.

Find all unique user IDs based on user_info_reg.csv.

12.15 Deduplication for a small file

Data in the file:

user_id reg_mon age cell_province id_province id_city insertdate reg_time

4838332017-04 19c29 c26 c26241 2018-12-11 56558

1567722016-05 31c11 c11 c11159 2018-02-13 81617

… … … … … … … …

417

A B

1
=file("E:/txt/user_info_reg.csv").import@tc(

user_id)
/Read the specified field

2 =A1.id(user_id) /Deduplicate user_ids to get unique ones

A2's result

12.15 Deduplication for a small file

SPL script is as follows:

Member

…

928193

928194

928195

418

Query a text file, removes duplicate data and perform count.

Deduplicate data by Date and ProductID, and then count the number of records.

12.16 Count distinct for small file data

Data in the file:

ID PID DATE QUANTITY SID

1211 100750522010-01-01 84 10225

2474 100980452010-01-01 106 10591

10576 100939802010-01-01 53 10720

… … … … …

419

A B

1 =file("E:/txt/PRODUCT_SALE.txt").import@t(DATE:date,PID) /Read specified fields

2 =A1.groups(DATE,PID) /Deduplicate

3 =A2.len() /Count non-duplicate records

Results of A3:

12.16 Count distinct for small file data

SPL script is as follows:

Value

9849397

420

Query a text file, group records and remove duplicates in each group and perform count.

Count the number of days with sales records for each product based on PRODUCT_SALE.txt.

12.17 Perform grouping & count distinct in each group over a small file

Data in the file:

ID PID DATE QUANTITY SID

1211 100750522010-01-01 84 10225

2474 100980452010-01-01 106 10591

10576 100939802010-01-01 53 10720

… … … … …

421

A B

1 =file("E:/txt/PRODUCT_SALE.txt").import@t(DATE:date,PID) /Read specified fields

2 =A1.groups(PID;icount(DATE):days_with_sales)
/Group and deduplicate records and then count the number

of days with sales records

A2's result

12.17 Perform grouping & count distinct in each group over a small file

SPL script is as follows:

PID days_with_sales

10000002 89

10000003 111

10000004 101

… …

422

Query data from two associated small files.

Find employees who have spouses and where the total of the couple's ages is over 80 based

on Employees.txt and EmpRel.txt.

12.18 Associatively query data over multiple files

Data in the files:

EID NAME SURNAME GENDER STATE BIRTHDAY HIREDATE DEPT SALARY

1Rebecca Moore F California 1974/11/20 2005/3/11 R&D 7000

2Ashley Wilson F New York 1980/7/19 2008/3/16 Finance 11000

…… … … … … … … …

Emp1 Emp2 Relationship

21 22Spouse

10 1Spouse

… ……

423

A B

1 =file("E:\\txt\\Employees.txt").import@t().keys(ID) /Set ID as primary key

2 =file("E:\\txt\\EmpRel.txt").import@t()

3 =A2.select(Relationship=="Spouse") /Select records that have a spouse from A2

4 >A3.switch(Emp1,A1;Emp2,A1) /Replace Emp1 and Emp2 fields with corresponding records in EmpRel table

5 =A3.select(age(Emp1.Birthday)+age(Emp2.Birthday)>80) /Select records with the couple's total age over 80

6 >A5.run(Emp1=Emp1.Name,Emp2=Emp2.Name) /Replace records with their Name field values

A5's result after A6 is executed

12.18 Associatively query data over multiple files

SPL script is as follows:

Emp1 Emp2 Relationship

Ryan Rebecca Spouse

Ashley Samantha Spouse

Christopher Rachel Spouse

… … …

424

Use foreign key objectification to join two small files and query a non-associative field.

Find the Department with the youngest department manager based on EMPLOYEE.txt and DEPARTMENT.txt.

12.19 Join small files to query non-associative field

Data in the files:

EID NAME SURNAME GENDER STATE BIRTHDAY HIREDATE DEPT SALARY

1Rebecca Moore F California 1974/11/20 2005/3/11 R&D 7000

2Ashley Wilson F New York 1980/7/19 2008/3/16 Finance 11000

…… … … … … … … …

DEPTID NAME MANAGER

1Administration 20

2Finance 2

…… …

425

A B

1 =file("E:/txt/EMPLOYEE.txt").import@t() /Read EMPLOYEE.txt

2 =file("E:/txt/DEPARTMENT.txt").import@t() /Read DEPARTMENT.txt

3 =A2.join(MANAGER,A1:EID,~:manager)
/Get the corresponding records in employee table through the foreign key

of department table

4 =A3.minp(manager.(age(BIRTHDAY))).manager.DEPT /Find the department with the youngest department manager

A4

12.19 Join small files to query non-associative field

SPL script is as follows:

Value

Finance

426

Combine data in two small associative files to generate a wide table.

Add the information in user_info.csv to lending_info.csv to form a wide table.

A foreign key join requires that the joining field be unique. In

this case, user_id in user_info.csv must be unique.

12.20 Join small associative files into a wide table

Data in the files:

user_id listing_id auditing_date due_date due_amt

498765 54314382019/3/12 2019/4/12 138.5903

34524 54432112019/3/15 2019/4/15 208.0805

… … … … …

user_id reg_mon gender age cell_province id_province id_city insertdate

4838332017-04 M 19c29 c26 c26241 2018/12/11

1567722016-05 M 31c11 c11 c11159 2018/2/13

… … … … … … … …

427

A B

1 =file("E:/txt/lending_info.csv").import@tc() /Read lending_info.csv

2 =file("E:/txt/user_info.csv":"utf-8").import@tc() /Read user_info.csv using the character set "utf-8"

3 =A2.group@1s(user_id) /Deduplicate user_id by getting the first record of each group and get a unique user_id

4 =A3.fname().m(2:) /List other user information besides user_id

5 =A1.join(user_id,A3:user_id,${A4.concat@c()}) /Join two tables to form a wide table

A5

12.20 Join small associative files into a wide table

SPL script is as follows:

user_id listing_id auditing_date due_date due_amt reg_mon gender age cell_province id_province id_city insertdate

498765 54314382019-03-12 2019-04-12 138.59032017-05 M 37c11 c11 c11245 2019-03-11

34524 54432112019-03-15 2019-04-15 208.08052015-07 M 26c25 c25 c25074 2019-03-14

821741 54617072019-03-22 2019-04-22 421.20972018-03 F 25c22 c22 c22308 2019-03-21

… … … … … … … … … … … …

428

Combine data from multiple text files.

The employee data of each department is stored in different files under the same directory.

Combine employee data , sort it by EID, and save the result as a single file.

Employee files

12.21 Combine data from multiple text files

429

A B

1 =directory@p("E:/txt/employee_dept") /List files with full pathnames in the directory

2 =A1.(file(~).import@t()) /Read each of the files

3 =A2.conj().sort(EID) /Combine and sort

4 =file("E:/txt/EMPLOYEE.txt").export@t(A3) /Write data to a single file

A3

12.21 Combine data from multiple text files

SPL script is as follows:

EID NAME SURNAME GENDER STATE BIRTHDAY HIREDATE DEPT SALARY

1Rebecca Moore F California 1974/11/20 2005/3/11 R&D 7000

2Ashley Wilson F New York 1980/7/19 2008/3/16 Finance 11000

…… … … … … … … …

430

Divide data in a text file into groups and write them to different files.

Write the EMPLOYEE.txt file to different files by department.

12.22 Divide data in a text file into groups and write them to different files

Data in the file:

EID NAME SURNAME GENDER STATE BIRTHDAY HIREDATE DEPT SALARY

1Rebecca Moore F California 1974/11/20 2005/3/11 R&D 7000

2Ashley Wilson F New York 1980/7/19 2008/3/16 Finance 11000

…… … … … … … … …

431

A B

1 =file("E:/txt/EMPLOYEE.txt").import@t() /Read EMPLOYEE.txt

2 =A1.group(DEPT) /Group by department

3 =A2.(file("E:/txt/employee_s/emp_"+~.DEPT+".txt").export@t(~)) /Name and export the files

A2

File directory

12.22 Divide data in a text file into groups and write them to different files

SPL script is as follows:

432

Write the data in a text file to different files according to judgements of the specified condition.

Write the EMPLOYEE_nan.txt file to different files according to whether there is missing

information or not.

12.23 Write data in a text file to different files according to judgements

Data in the file:

EID NAME SURNAME GENDER STATE BIRTHDAY HIREDATE DEPT SALARY

…… … … … … … … …

15Alexis Smith F New York 1983-07-10 2006-07-10 Sales 8000.0

16Christopher M Florida 1979-06-27 2007-06-27 Production 9000.0

17Hannah Johnson F Texas 2006-07-19 Marketing 4000.0

…… … … … … … … …

433

A B

1 =file("E:/txt/EMPLOYEE_nan.txt").import@t() /Import data

2 =[true,false] /Ensure that the data will be divided into two groups

3 =A1.align@a(A2,~.array().pos(null)>0) /Divide data into two groups by whether there is missing value or not

4 =A3.(file("E:/txt/employee_N_s/employee_"+["NA","NO_NA"](#)+".txt").export@t(~))

/Export to corresponding files respectively

File directory

12.23 Write data in a text file to different files according to judgements

A3

SPL script is as follows:

434

SPL
COOKBOOK

Using structured big text file

Chapter 13

435

Filter a big text file to get records meeting the specified condition.

Find scores of students in class 10 in big file students_scores.txt..

13.1 Filter a big file

Text content CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

1 Allen Ashley 98 97 97

1 Allen Brandon 93 76 78

……

436

A B

1 =file("E:/txt/students_scores.txt").cursor@t() /Read file by cursor, @t option reads the first line as title

2 =A1.select(CLASS==10) /Select records of students in class 10, which will be calculated later

3 =A2.fetch() /Perform A2's calculation and fetch data from cursor,

Results of A3

13.1 Filter a big file

SPL script is as follows:

CLASS Name English Chinese Math

10Adams Ashley 89 49 91

10Adams Kayla 85 74 45

10Allen Danielle 62 77 88

… … … … …

437

Aggregate data in a big text file to get sum.

Calculate the total score of Chinese based on the big text file students_scores.csv.

13.2 Perform aggregate sum over a big text file

Text content CLASS,NAME,English,Chinese,Math

1,Adams Brooke,63,31,69

1,Adams Hannah,89,85,79

1,Adams Jonathan,88,87,91

…

438

A B

1 =file("E:/txt/students_scores.csv").cursor@tc()
/Read file by cursor; @c means that the specified

separator is ","

2 =A1.total(sum(Chinese)) /Get the sum of Chinese scores

Results of A2

13.2 Perform aggregate sum over a big text file

SPL script is as follows:

Value

181025

439

Perform inter-column calculations in a big text file.

Calculate the total score of each student based on the big text file students_scores_.txt.

13.3 Inter-column calculation in a big text file

Text content CLASS|NAME|English|Chinese|Math

1|Adams Brooke|63|31|69

1|Adams Hannah|89|85|79

1|Adams Jonathan|88|87|91

…

440

A B

1 =file("E:/txt/students_scores_.txt").cursor@t(;,"|") /Read file by cursor, the specified separator is "|"

2 =A1.derive(English+Chinese+Math:total_score) /Attach a derive operation to cursor to calculate the total score

3 =A2.fetch@x(100) /Perform A2's attached calculation, fetch data and close the cursor

A3's result

13.3 Inter-column calculation in a big text file

SPL script is as follows:

CLASS Name English Chinese Math

1Adams Brooke 63 31 69

1Adams Hannah 89 85 79

1Adams Jonathan 88 87 91

… … … … …

441

Perform comprehensive calculations using a big text file.

Calculate the students' average score of Chinese in class 10 and the Chinese average score of

students who get a pass for Chinese in class 10 respectively based on big data file

students_scores_.txt.

13.4 Perform comprehensive calculations over a big text file

Text content CLASS|NAME|English|Chinese|Math

1|Adams Brooke|63|31|69

1|Adams Hannah|89|85|79

1|Adams Jonathan|88|87|91

…

442

A3's result

A B

1 =file("E:/txt/students_scores_.txt").cursor@t(CLASS,Chinese;,"|") /Read fields Class and Chinese by cursor

2 =A1.select(CLASS==10) /Attach the Select calculation to cursor

3 =A2.total(avg(Chinese),avg(if(Chinese>=60,Chinese)))
/Calculate the average, and the average of students

who get a pass respectively

13.4 Perform comprehensive calculations over a big text file

SPL script is as follows:

Member

62.667

78.706

443

Sort the structured data in a big text file by the values of a certain field in ascending order.

Sort records by Chinese score in ascending order based on big data file students_score.txt.

13.5 Sort a big text file

Some data in the file

Name Math Chinese English

Natalie 84 90 84

Jessica 87 88 78

Brianna 89 90 75

… … … …

444

A B

1 =file("E:/txt/students_score.txt").cursor@t() /Create a cursor

2 =A1.sortx(Chinese) /Sort in ascending order, and return a cursor

3 =A2.fetch@x(100) /Get the top 100 records

A3's result

13.5 Sort a big text file

SPL script is as follows:

Name Math Chinese English

Hannah 90 76 95

Tyler 87 78 93

Zachary 75 81 85

… … … …

445

Sort the structured data in a big text file in descending order.

Sort records by total score in descending order base on big data file students_score.txt.

13.6 Sort a big text file in descending order

Some data in the file

Name Math Chinese English

Natalie 84 90 84

Jessica 87 88 78

Brianna 89 90 75

… … … …

446

A B

1 =file("E:/txt/students_score.txt").cursor@t() /Create a cursor

2 =A1.sortx(-(Math+English+Chinese))
/Sort by the target values in descending order, and return a

cursor

3 =A2.fetch@x(100) /Fetch data

A3's result

13.6 Sort a big text file in descending order

SPL script is as follows:

Name Math Chinese English

Emma 88 84 94

Sean 98 86 81

Hannah 90 76 95

… … … …

447

Sort data in a big text file by multiple fields in the specified order.

Sort records by class in ascending order, and by total score in descending order

based on big data file students_scores.txt.

13.7 Sort a big text file by multiple fields in specified order

Some data in the file

Name Math Chinese English

Natalie 84 90 84

Jessica 87 88 78

Brianna 89 90 75

… … … …

448

A B

1 =file("E:/txt/students_scores.txt").cursor@t() /Create a cursor

2 =A1.sortx(CLASS,-(English+Chinese+Math)) /Sort according to requirements, and return a cursor

3 =A2.fetch@x(100) /Fetch data

A3's result

13.7 Sort a big text file by multiple fields in specified order

SPL script is as follows:

CLASS Name English Chinese Math

1Allen Ashley 98 97 97

1Lewis Antony 93 92 94

1Adams Jonathan 88 87 91

… … … … …

449

13.8 Find records in a big data table that match data in another big data table

Order

ID

CustomerID

EmployeeID

Date

Detail

ID

ProductID

Amount

Discount

Find records in a big data table that match the filtered data in another big data table.

Based on two big data tables, order and detail, query the number of orders with actual sales

amount exceeding 1000 for each salesman, and sort the final records in descending order.

450

13.8 Find records in a big data table that match data in another big data table

The SQL query:

select

EmployeeID, count(1) as OrderCount

from

Order

where

ID in (select ID from Detail where Amount*(1-Discount) > 1000)

group by EmployeeID

order by OrderCount desc

451

13.8 Find records in a big data table that match data in another big data table

A B

1 =connect("db") /Connect to database

2 =A1.cursor("select * from Order order by ID") /Create a cursor for Order table

3 =A1.cursor("select * from Detail order by ID") /Create a cursor for Detail table

4 =A3.select(Amount*(1-Discount)>1000) /Select records with actual sales amount over 1000

5 =A4.group@1(ID) /Group Detail by order ID, and only get one record for each group

6 =joinx(A2:Order,ID;A5:Detail,ID)
/Use joinx function to merge the cursors of Order table and Detail table in
order

7
=A6.groups(Order.EmployeeID:EmployeeID;
count(~):OrderCount).sort@z(OrderCount)

/Group by EmployeeID and count the orders of each employee, with records
sorted by OrderCount in descending order

The joinx() function is used here perform order-based merge. SPL script is as follows:

EmployeeID OrderCount

4 43

3 42

… …

A7

452

Perform grouping & aggregation over a big text file.

Count the total number of logins in each province based on big data file user_info_reg.csv.

13.9 Perform grouping & aggregation over a big file, with small result set

Some data in the file

user_id reg_mon age cell_province id_province id_city insertdate reg_time

4838332017-04 19c29 c26 c26241 2018-12-11 56558

1567722016-05 31c11 c11 c11159 2018-02-13 81617

… … … … … … … …

453

A B

1 =file("E:/txt/user_info_reg.csv").cursor@tc() /Create a cursor

2 =A1.groups(id_province;count(~):cnt) /Perform count after grouping

13.9 Perform grouping & aggregation for a large file, with small result set

Results of A2

SPL script is as follows:

id_province cnt

c01 27202

c02 61735

c03 14433

… …

454

Perform grouping & aggregation over a big text file. External storage is used for calculation

because the result set is large.

Calculate the total login duration of each user based on big data file user_info_reg.csv.

13.10 Perform grouping & aggregation over a big file, with large result set

Some data in the file

user_id reg_mon age cell_province id_province id_city insertdate reg_time

4838332017-04 19c29 c26 c26241 2018-12-11 56558

1567722016-05 31c11 c11 c11159 2018-02-13 81617

… … … … … … … …

455

A B

1 =file("E:/txt/user_info_reg.csv").cursor@tc() /Create a cursor

2 =A1.groupx(user_id;sum(reg_time):total_reg) /Perform sum after grouping, and return a cursor

3 =A2.fetch@x(1000)

Results of A3

13.10 Perform grouping & aggregation for a large file, with large result set

SPL script is as follows:

user_id total_reg

1 2345

2 74990

3 53724

… …

456

Perform filtering after grouping over a big text file.

Find the users whose total login duration is less than 1000 minutes based on big data file

user_info_reg.csv.

13.11 Filter after grouping over a big file

Some data in the file

user_id reg_mon age cell_province id_province id_city insertdate reg_time

4838332017-04 19c29 c26 c26241 2018-12-11 56558

1567722016-05 31c11 c11 c11159 2018-02-13 81617

… … … … … … … …

457

A B

1 =file("E:/txt/user_info_reg.csv").cursor@tc() /Create a cursor

2 =A1.groupx(user_id;sum(reg_time):total_reg) /Perform sum after grouping and return a cursor

3 =A2.select(total_reg<1000).fetch() /Perform filtering and fetch data

13.11 Filter after grouping over a big file

A3's result

SPL script is as follows:

user_id total_reg

41 512

68 130

90 486

… …

458

Query a big text file and remove duplicate data.

Find all unique user IDs based on big data file user_info_reg.csv.

13.12 Deduplication of big text file

Some data in the file

user_id reg_mon age cell_province id_province id_city insertdate reg_time

4838332017-04 19c29 c26 c26241 2018-12-11 56558

1567722016-05 31c11 c11 c11159 2018-02-13 81617

… … … … … … … …

459

A B

1 =file("E:/txt/user_info_reg.csv").cursor@tc() /Create a cursor

2 =A1.id(user_id) /Deduplicate to find unique user_ids

A2's result

13.12 Deduplication of big text file

SPL script is as follows:

Member

…

928193

928194

928195

460

Query a big text file, remove duplicate data and perform count.

Based on the big data file PRODUCT_SALE.txt, deduplicate data by date and product, and then

count the number of records.

13.13 Count distinct over a big text file

Some data in the file

ID PID DATE QUANTITY SID

1211 100750522010-01-01 84 10225

2474 100980452010-01-01 106 10591

10576 100939802010-01-01 53 10720

… … … … …

461

A B

1 =file("E:/txt/PRODUCT_SALE.txt").cursor@t(DATE,PID) /Read the specified fields

2 =A1.groupx(date(DATE),PID) /Deduplicate

3 =A2.skip()
/Calculate the number of non-

repeated records

A3's result

13.13 Count distinct over a big text file

SPL script is as follows:

Value

9849397

462

Query a big data text file, group data and then remove duplicates in each group and perform count.

Count the number of days with sales records for each product based on big data file PRODUCT_SALE.txt.

13.14 Group & count distinct in each group over a big text file

Some data in the file

ID PID DATE QUANTITY SID

1211 100750522010-01-01 84 10225

2474 100980452010-01-01 106 10591

10576 100939802010-01-01 53 10720

… … … … …

463

A B

1 =file("E:/txt/PRODUCT_SALE.txt").cursor@t(DATE,PID) /Create a cursor

2 =A1.groupx(date(DATE),PID) /Deduplicate

3 =A2.groups(PID;count(1):days_with_sales)
/Group records and count the number of days with sales

records

A3's result

13.14 Group & count distinct in each group over a big text file

SPL script is as follows:

PID days_with_sales

10000002 89

10000003 111

10000004 101

… …

464

13.15 Group a big file by values of a certain field, and query record containing the
max value of another field in each group

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

Group records in a big text file, find one record in each group by certain conditions, then merge them to return.

Query the records with the highest monthly amount based on big data file Sales.

465

13.15 Group a big file by values of a certain field, and query record containing the max value
of another field in each group

A B

1
=connect("db").query("select * from
Sales order by OrderDate")

/ReadSales table in the database and sort it by OrderDate

2 =A1.group(month(OrderDate)) /cs.group() function groups records by comparing the adjacent months

3 =A2.(~.maxp(Amount)) /Select the record with the highest monthly sales for each month

4 =A3.conj() /Return the concatenation of records

5 =A4.fetch() /Fetch data from cursor; the result set is small

SPL script is as follows，where cs.group(x, …) function groups records by comparing adjacent values and

returns the grouped original cursor:

A5 OrderID Customer SellerId OrderDate Amount

10267 FRANK 4 2013/07/29 4031.0

10286 QUICK 8 2013/08/21 3016.0

… … … … …

466

13.16 Combine & calculate data in multiple big data files

OrderID Customer SellerId OrderDate Amount

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

Combine & calculate records in multiple big text files.

Based on two big files s2014 and s2015 that contain sales data, query the customers whose total sales rank in top

three in the past two years.

467

13.16 Combine & calculate data in multiple big data files

A B

1 =connect("db") /Connect to database

2 =A1. cursor("select * from S2014") /Get the cursor of table S2014

3 =A1. cursor("select * from S2015") /Get the cursor of table S2015

4 =[A2,A3].conjx() /CS.conjx() function concatenates multiple cursors

5
=A4.groups(Customer;
sum(Amount):Amount)

/Group and aggregate the combined cursor, and calculate the total sales of each
customer

6 =A5.top(-3;Amount) /Select customers with top3 total sales in two years

SPL script is as follows，where CS.conjx() function concatenates multiple cursors vertically, which is

equivalent to combining records in the cursors:

A6 Customer Amount

SAVEA 177478.89

QUICK 102764.99

ERNSH 94066.28

468

Associatively query data over a large file and a small file.

Product information and sales information is stored in two text files respectively. Calculate the total sales

amount of products with each order quantity being not more than 10. The Sales table has a large amount of

data and cannot be wholly read into memory.

13.17 The join filter over a large file and a small file

Product

ID

Name

Desc

…

Sales

ID

CustomerID

ProductID

Date

469

A B

1 =file("E:/txt/Products.txt").import@t() /Read Products(in-memory table) and create an index

2 =file("E:/txt/Sales.txt").cursor@t() /Read Sales table as a single cursor or a multicursor

3 =A2.select(quantity<=10) /Filter the cursor

4 =A3.switch(productid,A1:ID)
/The switch function replaces foreign key of the cursor

with the corresponding records in the other table

5 =A4.groups(;sum(quantity*productid.Price):total) /Aggregate to get sum

4 =A3.join(productid,A1:ID,~:products)
/The join function attach records corresponding to foreign

key to the cursor

5 =A4.groups(;sum(quantity*products.Price):total) /Aggregate to get sum

4 =A3.join(productid,A1:ID,Price) /Use join to add Price field

5 =A4.groups(;sum(quantity*Price):total) /Aggregate to get sum

Results of A5

Method 1

Method 2

Method 3

13.17 The join filter over a large file and a small file

SPL script is as follows :

total

142740.180

470

Join a big data file and a small file into a wide table, and then perform query.

Add the information in user_info.csv to lending_info.csv to form a wide table.

13.18 Join a large file and a small file into a wide table to query

Some data in the files:

user_id listing_id auditing_date due_date due_amt

498765 54314382019/3/12 2019/4/12 138.5903

34524 54432112019/3/15 2019/4/15 208.0805

… … … … …

user_id reg_mon gender age cell_province id_province id_city insertdate

4838332017-04 M 19c29 c26 c26241 2018/12/11

1567722016-05 M 31c11 c11 c11159 2018/2/13

… … … … … … … …

471

A B

1 =file("E:/txt/lending_info.csv").cursor@tc() /Create a cursor

2 =file("E:/txt/user_info.csv":"utf-8").import@tc() /Read user_info.csv using the character set"utf-8"

3 =A2.group@1s(user_id) /Deduplicate user_id by getting the first record of each group to get unique user_ids

4 =A3.fname().m(2:) /List other information of other users besides user_id

5 =A1.join(user_id,A3:user_id,${A4.concat@c()}) /Join the smaller tables by cursor to form a wide table, and return a cursor

6 =A5.fetch@x(100) /Fetch 100 row and close the cursor

13.18 Join a large file and a small file into a wide table to query

SPL script is as follows:

A6

user_id listing_id auditing_date due_date due_amt reg_mon gender age cell_province id_province id_city insertdate

498765 54314382019-03-12 2019-04-12 138.59032017-05 M 37c11 c11 c11245 2019-03-11

34524 54432112019-03-15 2019-04-15 208.08052015-07 M 26c25 c25 c25074 2019-03-14

821741 54617072019-03-22 2019-04-22 421.20972018-03 F 25c22 c22 c22308 2019-03-21

… … … … … … … … … … … …

472

Perform merge join over two big data files to query.

The orders table and order details table are stored in two big data files. Calculate the total sales amount of each

customer.

Some data in Orders table Some data in Orderdetails table

13.19 Merge-join two big files

orderid clientid date

10012 1006582019-02-13

10023 1034782019-01-12

10040 1080132019-01-04

… … …

orderid no productid price

10012 1 3018 428.5

10012 2 3019 349.2

10023 1 3019 349.2

… … … …

473

A B

1 =file("E:/txt/Orders.txt").cursor@t().sortx(orderid)
/sortx is not needed if data is already ordered by orderid

2 =file("E:/txt/OrderDetails.txt").cursor@t().sortx(orderid)

3 =joinx(A1:order,orderid;A2: detail,orderid) /Use joinx to join two cursors

4 =A3.groups(order.clientid:clientid;sum(detail.price):amount) /Calculate the total sales amount of each customer

A4's result

13.19 Merge-join two big files

SPL script is as follows:

clientid amount

100008 12350.0

100011 53400.0

100015 13790.0

… …

474

Set operations of multiple big text files: external storage is needed because of the large amount of data.

User login information is stored in different files by month. Query login information of a large number

of users according to the requirements.

13.20 Set operations of multiple big text files

475

A B

1 =file("E:/txt/user_login_info_1.txt").cursor@t().sortx(userid).group@1(userid)

/Users' first login information in Jan, Feb and Mar. sortx is

not needed if data is already ordered by userid2 =file("E:/txt/user_login_info_2.txt").cursor@t().sortx(userid).group@1(userid)

3 =file("E:/txt/user_login_info_3.txt").cursor@t().sortx(userid).group@1(userid)

4 =[A1,A2,A3].mergex(userid).fetch() /Merge users' first login information of each month in order by userid

4 =[A1,A2,A3].mergex@u(userid).fetch() /Get the union，i.e. users who log in at least once in 3 months

4 =[A1,A2,A3].mergex@i(userid).fetch() /Get the intersection，i.e. users who log in every month for 3 months

4 =[A1,A2,A3].mergex@d(userid).fetch() /Get the difference, i.e.，users who log in in January but not in February and March

13.20 Set operations of multiple big text files

SPL script is as follows:

The cursor can only traverse one way when data is fetched from it, so only one of the four operations in A4 can be

executed at a time.

userid login

6000012019-01-25 02:49:43

6000012019-02-11 13:16:46

6000012019-03-06 17:27:49

… …

userid login

6000012019-01-25 02:49:43

6000022019-01-20 03:00:28

6000032019-01-13 14:34:20

… …

userid login

6000012019-01-25 02:49:43

6000022019-01-20 03:00:28

6000032019-01-13 14:34:20

… …

userid login

6012932019-01-10 08:04:36

6019992019-01-11 16:49:25

6052272019-01-18 15:24:26

… …

476

Divide data in a big data text file into groups and write them to different files. External storage is needed

because of the large amount of data.

Write the big data file EMPLOYEE.txt to different files by department.

13.21 Divide a big text file into groups and write them to different files

Some data in the file

EID NAME SURNAME GENDER STATE BIRTHDAY HIREDATE DEPT SALARY

1Rebecca Moore F California 1974/11/20 2005/3/11 R&D 7000

2Ashley Wilson F New York 1980/7/19 2008/3/16 Finance 11000

…… … … … … … … …

477

A B

1 =file("E:/txt/EMPLOYEE.txt").cursor@t()

2 for A1,10000 =A2.group(DEPT)

3 =B2.(file("E:/txt/EMPLOYEE/EMP_"+~.DEPT+".txt").export@at(~))

4 /Read file by cursor and fetch data in loop. The data retrieved each time is processed as a small file. @a is used to append data during the export.

Results of A2, B2 in the first loop

13.21 Divide a big text file into groups and write them to different files

SPL script is as follows:

File directory

478

Write data in a big data text file to different files according to the judgement of the specified condition. External

storage is needed because of the large amount of data.

Write the big data file EMPLOYEE_nan.txt to different files according to whether there is missing information or not.

13.22 Write data in a large text file to different files according to judgements

Some data in the file

EID NAME SURNAME GENDER STATE BIRTHDAY HIREDATE DEPT SALARY

…… … … … … … … …

15Alexis Smith F New York 1983-07-10 2006-07-10 Sales 8000.0

16Christopher M Florida 1979-06-27 2007-06-27 Production 9000.0

17Hannah Johnson F Texas 2006-07-19 Marketing 4000.0

…… … … … … … … …

479

A B

1 =file("E:/txt/EMPLOYEE_nan.txt").cursor@t()

2 =[true,false] /Ensure that ata is divided into two groups each time

3 for A1,10000 =A3.align@a(A2,~.array().pos(null)>0)

4 =B2.(file("E:/txt/EMPLOYEE_N/EMPLOYEE_"+["NA","NO_NA"](#)+".txt").export@at(~))

5 /Read file by cursor and fetch data in loop. The data retrieved each time is processed as a small file. @a is used to append data during the export.

File directoryResults of A3, B3 of the first loop

13.22 Write data in a large text file to different files according to judgements

SPL script is as follows:

480

13.23 Organize a fixed-structure big text file into structured data

1
Mike
17

2
Rose
16

3
Smith
15

4
Mary
14

ID

Name

Age

Field name

Organize a multiline big text file with fixed structure into structured data.

In the big data file student.txt, every three line is a record, and there is a blank line between adjacent records. Read

the text and organize it into structured data.

481

13.23 Organize a fixed-structure big text file into structured data

A B

1 =file("D:\\student.txt") /Open the file

2 =A1.cursor@i() /Create file cursor

3 =A2.select(~!=null) /Remove blank lines between records

4 =create(ID,Name,Age) /Create table structure

5 for A3,3000 >A4.reset()

6 =A4.record(A5)

7 =file("D:\\struct_student.txt").export@at(B6)

By default, the cursor stores data as a structured table sequence. But
since this text file has only one column, we use @i option to convert
the one-column table to a sequence, which is convenient for
subsequent calculation.

Note the difference between the cursor data and the row read in the
last section. The cursor always stores data in a certain structure, and
automatically resolves data to the proper data type, so the empty row
is resolved as null.

The data is processed in loop and blocks. It should be noted that the
number of blocks fetched each time must be a multiple of 3, because
the current table structure is 3 columns; otherwise the data filling will
be misplaced.

After the structured data is calculated, clean it up to prevent memory
overflow.

482

Organize a big text file with indefinite-line structure into structured data.

Sort out the data in the big file mail.txt, including the sender, receiver, date, mail content, etc.. The contents of mails

may contain different numbers of lines.

13.24 Organize a big file with indefinite-line structure into structured data

Sender:
Melody<Melody@bus.emory.edu>
Receiver:
Susan<Susan@google.com>
Date:
1/14/2020
Content:
Do you Yahoo!?
SBC Yahoo! DSL - Now only $29.95 per month!

Sender:
Tom<Tom@163.com>
Receiver:
rose<rose@163.com>
Date:
2/24/2020
Content:
IMPORTANT NOTICE:
The information in this email (and any attachments) is
confidential.
If you are not the intended recipient, you must not use or
disseminate
the information. If you have received this email in error,
please
immediately notify me by "Reply" command and
permanently delete
the original and any copies or printouts thereof.

Sender

Receiver

Date

Content

1
2
3
4
5
6
7
8

Field name

9

483

13.24 Organize a big file with indefinite-line structure into structured data

A B

1 =file("D:\\mail.txt") /Open the file

2 =A1.cursor@i().select(~!=null)
/Create a cursor and attach the operation of
removing empty lines to it

3 =A2.group@i(~=="Sender:") /Group by condition

4
=A3.new(~(2):Sender,~(4):Receiver,~(6):Date,~
.to(8,).concat():Content)

/Extract record values, merge the contents, create
new structure table

5 =A4.fetch@x(100) /Fetch 100 records from cursor

~.to(8,) means starting from line 8
of the current group; omitting
parameters after the comma means
getting all the following lines.
.concat() concatenates members of
a sequence into a string.

Use @i option to read
data as a sequence, and
use null to identify
empty lines.

Fetch data from a
structured table. Data
needs to be fetched in
blocks to prevent memory
overflow.

SPL script is as follows:

484

Traverse all big text files in the specified directory, read data from each file in batches, and find

the lines containing the keyword.

13.25 Find the lines containing keyword in all big text files in the specified directory

485

13.25 Find the lines containing keyword in all big text files in the specified directory

A B C

1
=directory@ps(p
ath+"/*.txt")

/List all text files in the
directory(including subdirectories)

2 for A1
=file(A2).cursor@is().run(if(
pos(~,key),output(A2/"
No"/#/"Row: "/~)))

/Create file cursor

3 for B2,1000
/Fetch data in
blocks

4

@s option processes data by rows; @i option converts the
returned single-field table sequence to sequence; run()
traverses files to search the contents of each file.

Fetch data from B2's cursor in loop, with 1000 rows fetched
each time, until all data is fetched. The run function defined
earlier will be executed automatically during the fetching
process.

Define two entry parameters: path is the root directory, and

key is the keyword to be searched.

SPL script is as follows:

486

Traverse all text files under the directory, read data from each file in batches, replace the

specified text and output data in the updated files to new files.

13.26 Replace specified text in all text files under the specified directory

487

13.26 Replace specified text in all text files under the specified directory

A B C

1
=director
y@ps(pat
h+"/*.txt")

/List all text files in the
directory(including
subdirectories)

2 for A1 =file(A2).cursor@is()
/Loop through all files in
the directory and create
cursor

3
=B2.run(~=replace(~,s
ource,target))

/Define replacement
calculation for cursor

4
=file(filename@d(A2)+
"\\"+filename@n(A2)+"
_2."+filename@e(A2))

/Define a new output file
in the path of the source
file

5 =movefile(B4)
/Delete a new file with
the same name to
prevent wrong appending

6 for B3,1000 =B4.write@a(B6)

When doing the replacement in cursor, because the
source file reading and updated file writing are carried
out at the same time, we need a new file to which the
updated data is written.

Read data in loop and append data to B4's
file.

Define three entry parameters: path is the root directory,

source is the keyword to be searched, and target is the

word to replace with.

SPL script is as follows:

488

Count the number of each English word's appearances.

13.27 Count the frequencies of each word in a big text file

489

13.27 Count the frequencies of each word in a big text file

A B

1 =file(filePath).cursor@is() /Create file cursor

2 =A1.run(~=~.words()).conj()

/Define delayed calculation. Each row of
data is split into a sequence of words and
finally all sequences is merged into a
large sequence.

3
=A2.groups(~:Word;count(~):
Count)

/Perform count over the cursor

@is option reads data as a sequence.

Define an entry parameter: filepath is the name of the target file.

SPL script is as follows:

490

Count the number of appearances of each letter in a big text file.

13.28 Count the frequencies of each letter in a big text file

491

13.28 Count the frequencies of each letter in a big text file

A B

1 =file(filePath).cursor@is() /Create file cursor

2 =A1.run(~=~.split()).conj()

/Define delayed calculation. Each row
of data is split into a sequence of
words and finally all sequences is
merged into a large sequence.

3
=A2.groups(~:Char;count(~):C
ount)

/Perform count over the cursor

@is option reads data as a sequence.

Define an entry parameter: filepath is the name of

the target file.

SPL script is as follows:

492

Remove duplicate lines from a big text file.

13.29 Remove duplicate lines from a big text file

https://123.sogou.com/
https://www.sogou.com/
https://stackoverflow.com/
https://123.sogou.com/
http://www.raqsoft.com.cn/
https://www.baidu.com/
https://www.sogou.com/
https://123.sogou.com/
https://stackoverflow.com/
http://www.raqsoft.com.cn/

493

13.29 Remove duplicate lines from a big text file

A B

1 d:/urls.txt /Specify the file path

2 =file(A1).cursor@s() /Open file and create a cursor to read the text

3 =A2.groupx(_1) /Group by default field name _1

4
=file(filename@d(A1)+"\\"+filen
ame@n(A1)+"_2."+filename@e(
A1))

/Construct output file under the same path

5 for A3,1000 =A4.export@a(A5)

@s option indicates to return a cursor
with only one column, and return a
table sequence with default column
name when data is fetched.

@a option means to export by
appending.

SPL script is as follows:

494

Delete repeated paragraphs from a big text file.

13.30 Remove repeated paragraphs from a big text file

495

13.30 Remove repeated paragraphs from a big text file

A B

1 d:/novel.txt /Specify the file path

2 =file(A1).cursor@s() /Create a cursor to read text

3 =A2.derive(seq():Row)
/Add a column to calculate row
number

4
=A3.groupx(_1;min(Ro
w):Row)

/Group by filed _1, keep the row
with the minimum number among
duplicate rows

5 =A4.sortx(Row) /Sort by row number

6
=file(filename@d(A1)+"
\\"+filename@n(A1)+"_
2."+filename@e(A1))

/Construct output file under the
same path

7 for A5,1000 =A6.export@a(A7,_1)

When obtaining the unique row of each group:
1: Use group@1() for a sequence. @1 option must be present and
the parameter can be absent.
2: Use group@1(_1) for a table sequence. Both @1 option and a
field parameter must be present.
3: Use groupx(_1;min(Row):Row) for a table sequence's cursor. The
option is absent, the grouping field is present, and an aggregate
function performed over output rows is present.

Note that the sequence number expression is seq(), which is
different from the symbol # used for a table sequence. # represents
the sequence number of a member in a sequence. When fetching
data from a cursor by blocks, block fetched in each round # starts
from 1. In this case we use seq() function to get the correct
consecutive sequence number.

By removing duplicate by paragraph, the content after the

deduplication should not be disrupted. Add row number to each

row to restore the original order after grouping.

SPL script is as follows:

496

SPL
COOKBOOK

Querying text data directly with SQL

Chapter 14

497

Use SQL to find records that meet a certain condition from a text file.

Get the scores of students in class 10.

14.1 Filter

Text content

CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

…

498

A B

1 $select * from E:/txt/Students_scores.txt where CLASS=10 /Filter

A1's result

14.1 Filter

SPL script is as follows:

CLASS Name English Chinese Math

10Adams Ashley 89 49 91

10Adams Kayla 85 74 45

10Allen Danielle 62 77 88

… … … … …

499

Use SQL to aggregate data in a text file.

Calculate the average Chinese score of all students.

14.2 Aggregate

Text content CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

…

500

A B

1 $select avg(Chinese) from E:/txt/Students_scores.txt /Aggregate to get average

A1's result

14.2 Aggregate

SPL script is as follows:

_1

62.16517857142857

501

Use SQL to do inter-column calculation in a text file.

Calculate the total score of each student.

14.3 Inter-column calculation

Text content CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

…

502

A B

1 $select *,English+Chinese+Math as total_score from E:/txt/students_scores.txt /Add a computed column

A1's result

14.3 Inter-column calculation

SPL script is as follows:

CLASS Name English Chinese Math total_score

1Adams Brooke 63 31 69 163

1Adams Hannah 89 85 79 253

1Adams Jonathan 88 87 91 266

… … … … … …

503

Case statement can be used in SQL to do calculations with complex conditions.

Calculate whether each student has passed the English test or not.

14.4 CASE statement

Text content CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

…

504

A B

1

$select *,

case when English>=60

then 'Pass'

else 'Fail' end

as English_evaluation

from

E:/txt/students_scores.txt

/Judge whether the English

score is 'Pass' or not

A1's result

14.4 CASE statement

SPL script is as follows:

CLASS Name English Chinese Math English_evaluation

1Adams Brooke 63 31 69Pass

1Adams Hannah 89 85 79Pass

1Adams Jonathan 88 87 91Pass

… … … … … …

505

Use SQL to sort a text file in ascending/descending order.

Sort records by class in ascending order and by total score in descending order based on

students_scores.txt.

14.5 Sort

Text content CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

…

506

A B

1

$select *

from

E:/txt/students_scores.txt

order by CLASS,English+Chinese+Math desc

/Sort by the specified

field or an expression

A1's result

14.5 Sort

SPL script is as follows:

CLASS Name English Chinese Math

1Allen Ashley 98 97 97

1Lewis Antony 93 92 94

1Adams Jonathan 88 87 91

… … … … …

507

Use SQL to get Top-N records in a text file.

Find scores of students whose English scores rank in Top3.

14.6 TOP-N

Text content CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

…

508

A B

1

$select top 3 *

from

E:/txt/students_scores.txt

order by English desc

/top n

14.6 TOP-N

A1's result

SPL script is as follows:

CLASS Name English Chinese Math

2Davis Tyler 99 62 56

1Jackson Destiny 99 61 84

5Williams Andrew 99 66 65

509

Use SQL to group and aggregate data in a text file.

Query the average English score of each class.

14.7 Group & Aggregate

Text content CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

…

510

A B

1

$select CLASS,avg(English) as avg_En

from

E:/txt/students_scores.txt

group by CLASS

/Group and aggregate

14.7 Group & Aggregate

A1's result

SPL script is as follows:

CLASS avg_En

1 74.43103448275862

2 77.34375

3 72.72857142857143

… …

511

Use SQL to group and aggregate data in a text file and then filter it.

Find the classes whose average English score is less than 70.

14.8 Filter after grouping

Text content CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

…

512

A B

1

$select CLASS,avg(English) as avg_En

from

E:/txt/students_scores.txt

group by CLASS

having avg(English)<70

/Filter after grouping

14.8 Filter after grouping

A1's result

SPL script is as follows:

CLASS avg_En

4 69.6046511627907

7 69.86

513

Use SQL to query distinct data in a text file.

Query the class IDs.

14.9 Select distinct

Text content CLASS NAME English Chinese Math

1 Adams Brooke 63 31 69

1 Adams Hannah 89 85 79

1 Adams Jonathan 88 87 91

…

514

A B

1

$select distinct CLASS

from

E:/txt/students_scores.txt

/Use distinct to remove

duplicates

14.9 Select distinct

A1's result

SPL script is as follows:

CLASS

1

2

3

4

5

6

7

8

515

Use SQL to deduplicate and count data in a text file.

Count the number of distinct products in PRODUCT_SALE.txt.

14.10 Count distinct

Data in the file ID PID DATE QUANTITY SID

1211 10075052 2010-01-01 84 10225

2474 10098045 2010-01-01 106 10591

10576 10093980 2010-01-01 53 10720

…

516

A B

1

$select count(distinct PID)

from

E:/txt/PRODUCT_SALE.txt

/count(distinct), which

deduplicate data and count

distinct values

2

$select count(*) from

(select PID

from

E:/txt/PRODUCT_SALE.txt

group by PID)

/group data and then perform

distinct and count

14.10 Count distinct

A1's result

SPL script is as follows:

_1

100000

517

Use SQL to count distinct in each group after grouping.

Count the number of days with sales records for each product based on PRODUCT_SALE.txt.

14.11 Count distinct in each group after grouping

Data in the file ID PID DATE QUANTITY SID

1211 10075052 2010-01-01 84 10225

2474 10098045 2010-01-01 106 10591

10576 10093980 2010-01-01 53 10720

…

518

A B

1

$select PID,count(distinct DATE) as days_with_sales

from

E:/txt/PRODUCT_SALE.txt

group by PID

/count(distinct)+group

2

$select PID,count(*) as days_with_sales

from

(select PID

from E:/txt/PRODUCT_SALE.txt

group by PID,DATE)

group by PID

/group+group

3

$select PID,count(*) as days_with_sales

from

(select distinct PID,DATE

from E:/txt/PRODUCT_SALE.txt)

group by PID

/distinct+group

14.11 Count distinct in each group after grouping

A1's result

SPL script is as follows:

PID days_with_sales

10000002 89

10000003 111

10000004 101

… …

519

Use SQL to perform a join query over two text files.

Calculate the total sales amount of products with each sales quantity less than 10 based on

Sales.txt and Products.txt.

14.12 Join query over two text files

Product

ID

Name

Desc

…

Sales

ID

CustomerID

ProductID

Date

Quantity

520

A B

1

$select sum(S.quantity*P.Price) as total

from E:/txt/Sales.txt as S join E:/txt/Products.txt as P

on S.productid=P.ID

where S.quantity<=10

/join，filter，
aggregate

14.12 Join query over two text files

A1's result

SPL script is as follows:

total

142740.180

521

Use SQL to perform a join query over multiple files.

Find the employees of the HR Department in California based on EMPLOYEE_J.txt ,

DEPARTMENT.txt and STATE.txt.

14.13 Join query over multiple files

522

A B

1

$select e.NAME as NAME

from E:/txt/EMPLOYEE_J.txt as e

join E:/txt/DEPARTMENT.txt as d on e.DEPTID=d.DEPTID

join E:/txt/STATE.txt as s on e.STATEID=s.STATEID

where

d.NAME='HR' and s.NAME='California'

/Single level multi-

foreign-key join

14.13 Join query over multiple files

A1's result

SPL script is as follows:

NAME

Gabriel

Megan

523

Use SQL to perform a multi-level join query over multiple text files.

Query employees in New York state whose manager is in California.

14.14 Multi-level join query over multiple files

524

A B

1

$select e.NAME as ENAME

from E:/txt/EMPLOYEE.txt as e

join E:/txt/DEPARTMENT.txt as d on e.DEPT=d.NAME

join E:/txt/EMPLOYEE.txt as emp on d.MANAGER=emp.EID

where e.STATE='New York' and emp.STATE='California'

/Multi-level foreign key join

14.14 Multi-level join query over multiple files

A1's result

SPL script is as follows:

NAME

Jessica

Alexis

Cameron

…

525

You can use nested SQL subqueries in SPL.

Find the department with the youngest manager based on DEPARTMENT.txt and EMPLOYEE.txt .

14.15 Using nested subquery

Data in the files:

EID NAME SURNAME GENDER STATE BIRTHDAY HIREDATE DEPT SALARY

1Rebecca Moore F California 1974/11/20 2005/3/11 R&D 7000

2Ashley Wilson F New York 1980/7/19 2008/3/16 Finance 11000

…… … … … … … … …

DEPTID NAME MANAGER

1Administration 20

2Finance 2

…… …

526

A

1

$select emp.DEPT as DEPT

from E:/txt/DEPARTMENT.txt as dept

join E:/txt/EMPLOYEE.txt emp

on dept.MANAGER=emp.EID

where

emp.BIRTHDAY=(select max(BIRTHDAY)

from (select emp1.BIRTHDAY as BIRTHDAY

from E:/txt/DEPARTMENT.txt as dept1

join E:/txt/EMPLOYEE.txt as emp1

on dept1.MANAGER=emp1.EID

)

)

14.15 Using nested subquery

A1's result

SPL script is as follows:

DEPT

Finance

527

Use SQL WITH clause to calculate data in a text file.

For example, find HR, R&D and sales department from DEPARTMENT.txt, and then calculate the

number and average salary of female employees in these departments.

14.16 Using common table expression (CTE)

Text content

EMPLOYEE.txt

DEPARTMENT.txt

EID NAME SURNAME GENDER STATE BIRTHDAY HIREDATE DEPT SALARY

1Rebecca Moore F California 1974/11/20 2005/3/11 R&D 7000

2Ashley Wilson F New York 1980/7/19 2008/3/16 Finance 11000

…… … … … … … … …

DEPTID NAME MANAGER

1Administration 20

2Finance 2

…… …

528

A B

1

$with A as

(select NAME as DEPT from E:/txt/DEPARTMENT.txt

where NAME='HR' or NAME='R&D' or NAME='sales')

select A.DEPT DEPT,count(*) NUM,avg(B.SALARY)

AVG_SALARY from

A left join E:/txt/EMPLOYEE.txt B

on A.DEPT=B.DEPT

where B.GENDER='F' group by A.DEPT

/with…as…

14.16 Using common table expression (CTE)

A1's result

SPL script is as follows:

DEPT NUM AVG_SALARY

HR 10 6300.0

R&D 11 8954.5

Sales 96 7250.0

… … …

529

You can execute simple SQL in the command line to query a text file.

Calculate the average salary of each department based on the employee salary file.

14.17 Using command line to execute SQL

Data in the file

EID NAME SURNAME GENDER STATE BIRTHDAY HIREDATE DEPT SALARY

1Rebecca Moore F California 1974/11/20 2005/3/11 R&D 7000

2Ashley Wilson F New York 1980/7/19 2008/3/16 Finance 11000

…… … … … … … … …

530

Use a cd command in command line to get into esProc/bin (where esprocx.exe is located) and

execute the SQL statement using the following command: .\esprocx –r "SQL statement"

Command line content

.\esprocx -r "select DEPT,avg(SALARY) from E:/txt/EMPLOYEE.txt group by DEPT"

14.17 Using command line to execute SQL

Execution result

531

SPL
COOKBOOK

Using Excel data

Chapter 15

532

15.1 Read xlsx data in simple format

Read data in an xlsx file. The first row in the file is the column title. Starting from the
second row, each is a record.

533

15.1 Read xlsx data in simple format

A1 Open file"scores.xlsx" and import it as a table
sequence; @t option indicates importing the first row as
the title

A2 Write the table sequence in A1 into a text file; @t
option means exporting the title first

The table sequence obtained in A1 is as follows:

A

1 =file("scores.xlsx").xlsimport@t()

2 =file("scrores.txt").export@t(A1)

SPL script:

534

15.2 Read xlsx data with complex header

Read data in an xlsx file with complex header. The header of the file contains table name,
item name and related information.

535

15.2 Read xlsx data with complex header

A1 Open the file and import data into a table
sequence. The parameter "1,5" means reading
data through to the end in the first sheet starting
from line 5.

A2 Change the column names of table sequence
in A1 to "No, ItemCode, ItemName, Unit, Quantity,
Price, Sum".

The result table sequence is as follows:

A

1 =file("listsAndPrices.xlsx").xlsimport(;1,5)

2
=A1.rename(#1:No,#2:ItemCode,#3:ItemNa

me,#4:Unit,#5:Quantity,#6:Price,#7:Sum)

SPL script:

536

15.3 Read free format xlsx data

Read data in a free format xlsx file. The first column of the file contains field names, which
are followed by the free format data values on the right.

537

15.3 Read free format xlsx data

Each employee's information occupies 9 rows. SPL reads such a file in the following way:

A B C

1 =create(ID,Name,Sex,Position,Birthday,Phone,Address,PostCode)

2 =file("Employe.xlsx").xlsopen()

3 [C,C,F,C,C,D,C,C] [1,2,2,3,4,5,7,8]

4 for =A3.(~/B3(#)).(eval($[A2.xlscell(]/~/")"))

5 if len(B4(1))==0 break

6 >A1.record(B4)

7 >B3.run(~+=9)

SPL script:

538

15.3 Read free format xlsx data

A1 Create an empty table sequence with column names as"ID, Name, Sex, Position, Birthday, Phone, Address, PostCode"
A2 Open the Excel file
A3 Define the sequence of column numbers that command the cells containing employee information
B3 Define the sequence of row numbers that command the cells containing employee information
A4 Use for loop to read each employee's information
B4 A3.(~/B3(#)) first gets the sequence of the cell numbers for the current employee, and then read cell values as a sequence of employee
information. The first cycle is [C1, C2, F2, C3, C4, D5, C7, C8], the second cycle is [C10, C11, F11, C12, C13, D14, C16, C17]... Add 9 to the row
number each time. $[A2.xlscell(], which is equivalent to"A2.xlscell(", represents a string.
B5 Judge whether the employee ID value is empty. If it is empty, exit the loop and end the operation.
B6 Append an employee's information at the end of table sequence in A1
B7 Add 9 to each member of the sequence of row numbers to read information of the next employee

The table sequence obtained in A1 is as follows:

539

15.4 Read the crosstab in an xlsx file

Read the crosstab in an xlsx file.

540

15.4 Read the crosstab in an xlsx file

A1 Open the file and import data as a table
sequence.
A2 Since the first cell in the second row contains a
picture, the read data is null and the first column
doesn't have a title. Change the name of the first
column to Type.

A3 Perform column to row transposition over the
table sequence by grouping by type. @r options
means to convert column data to row data. After
conversion, the new column names are "Area" and
"Amount".The table sequence obtained in A3 is as follows:

A

1 =file("cross.xlsx").xlsimport@t(;1,2)

2 =A1.rename(#1:Type)

3 =A2.pivot@r(Type;Area,Amount)

SPL script:

541

15.5 Read the main & sub table in xlsx file

Read the main & sub table in an xlsx file. The xlsx file is composed of multiple worksheets. Each
worksheet contains a main table and the sub table.

542

15.5 Read the main & sub table in xlsx file

A1 Create an empty table sequence with column names "IDCard, Name, Sex, Birthday, Nation, Phone, Depart, Home,
Marital, Entry" to store the employee information in the main table
A2 Create an empty table sequence with column names "IDCard, Name, Relation, Workplace, Phone" to store the
information of employee family members in the sub table
A3 Define the sequence of cells holding employee information in the main table
A4 Open the Excel file
A5 Read each worksheet of the Excel file in loop

A B C

1 =create(IDCard,Name,Sex,Birthday,Nation,Phone,Depart,Home,Marital,Entry)

2 =create(IDCard,Name,Relation,Workplace,Phone)

3 [B4,B3,D3,F3,H3,F4,H4,B5,F5,H5]

4 =file("employee.xlsx").xlsopen()

5 for A4 =A3.(eval($[A4.xlscell(]/~/",\""/A5.stname/"\")")) >A1.record(B5)

6 =A4.xlsimport@t(Family,Name,Relation,Workplace,Phone;A5.stname,6)

7 =B6.rename(Family:IDCard) >B7.run(IDCard=B5(1))

8 >A2.insert@r(0:B7)

SPL script:

543

15.5 Read the main & sub table in xlsx file

B5 Read employee information as a sequence
C5 Save the employee information read by B5 in A1's table sequence
B6 Read the employee family member information from row 6 onward; read only the specified "Family, Name, Relation,

Workplace, Phone" columns.
B7 Change the name of family column of B6's table sequence to IDCard

C7 Assign values of IDCard column in employee information to IDCard column in B7's table
B8 Append employee family member information in B7 to A2's table sequence

The table sequence obtained in A1 is as follows:

The table sequence obtained in A2 is as follows:

544

15.6 Read big xlsx file

Read data in a big xlsx file and output it. The amount of data in the file is too large to be
read into the memory at one time.

545

15.6 Read big xlsx file

A1 Open orders.xlsx file and import it as a cursor.
@t option indicates that the first row of the file is
the column title, and @c option indicates
returning a cursor.

A2 Export the cursor data in A1 to the text file
orders.txt. @t option means to export the title
first.

This example is very similar to 15.1, except that
the @c option is used in A1 to read data with a
cursor. Only Excel files in xlsx format can be read
using cursor.

A

1 =file("orders.xlsx").xlsimport@tc()

2 =file("orders.txt").export@t(A1)

SPL script:

546

15.7 Write a data table to xlsx file

Read a data table in a text file and export it to an xlsx file.
Write the data table and its column headers stored in text file orders.txt to Excel file
orders.xlsx.

547

15.7 Write a data table to xlsx file

A1 Import the orders table in text format.
A2 Export A1's data to the orders.xlsx file (which
will be automatically created if the file does not
exist). Since no field is specified through
parameter in xlsexport function, all fields of A1
will be exported. As no target worksheet is
specified, data is exported to Sheet1. The
function uses @t option to export the field
names to the first row.

The exported Excel file:

A

1 =file("orders.txt":"UTF-8").import@t()

2 =file("orders.xlsx").xlsexport@t(A1)

SPL script:

548

15.8 Append data table to xlsx file

Append a data table to an xlsx file. The new data is added after the existing data in the file.
Append the data table stored in text file aday.txt to Excel file orders.xlsx.

549

15.8 Append data table to xlsx file

If the Excel file already exists, use @a option to append data
to the original file. In this case, @t option is not support.

A

1 =file("aday.txt":"UTF-8").import@t()

2 =file("orders.xlsx").xlsexport@a(A1)

SPL script:

550

15.9 Write data table to different worksheets of an xlsx file

Export a data table to different sheets of an xlsx file.

Export data of Shantai company in text file orders.txt to worksheet Shantai in Excel file orders.xlsx.

551

15.9 Write data table to different sheets of an xlsx file

A2: Filter A1's table sequence
A3: Export A2 to orders.xlsx. Only four fields, ID,
Company, OrderDate and Amount, are exported;
and rename OrderDate as Date, rename Amount
as Money. Data is exported to a sheet named
Shantai.

The exported Excel file:

A

1 =file("orders.txt":"UTF-8").import@t()

2 =A1.select(Company=="Shantai")

3

=file("orders.xlsx").xlsexport@t(A2,ID,Co
mpany,OrderDate:Date,Amount:Money;"S
hantai")

SPL script:

552

15.10 Export a large amount of data to xlsx file

When exporting a large amount of data to an xlsx file, the data can not be entirely read

into memory, so we use cursor to read data row by row

Write data of the big text file big.txt to Excel file big.xlsx.

When exporting data with a cursor, you need to use @s option to do a stream-style

export to make sure that the memory receives only a small amount of data.

553

15.10 Export a large amount of data to xlsx file

In this example, 123663 records are exported. This method can export hundreds of millions of records.
However, an Excel worksheet can only hold 1048576 rows of data at most, so when the exported data
reaches a million rows, a new worksheet is needed to store data.

The exported Excel file:

A

1 =file("big.txt":"UTF-8").cursor@t()

2 =file("big.xlsx").xlsexport@st(A1)

SPL script:

554

15.11 Sort after join

Sort two joined tables by specified expression.

Based on Indicators.xlsx，get the indicators of U.S. and China that have a large gap between the two

countries.

555

15.11 Sort after join

SPL script is as follows, where A.sort() function is used to sort the data:

A B

1 =file("Indicators.xlsx").xlsopen() /Open the Excel file

2 =A1.xlsimport@t(Indicator,Last).select(Indicator!=null)
/Import the first sheet (USA) and select records whose
Indicator value is not null

3 =A1.xlsimport@t(Indicator,Last;"China").select(Indicator!=null)
/Import the sheet containing indicators of China and select
records whose Indicator value is not null

4
=A2.join(Indicator,A3:Indicator,Last:'China').rename(Last:'Unite
d States')

/Join tables in A2 and A3 by Indicator field

5
=A4.sort@z(max('United States','China') / min('United
States','China'))

/Sort by the ratio of indicators (the larger one to the smaller
one) of the US and China in descending order, where sort
function is used to sort the data and @z option means
descending order

Indicator United States China

Foreign Exchange Reserves: % of GDP 0.22 25.6

Foreign Exchange Reserves: Months of Import 0.2 22.7

Imports: Television 2.124857134E7 198972.78

Foreign Exchange Reserves 44123 3134482

… … …

A5

556

15.12 Specify display attributes

Sometimes we want to be able to specify the format for the generated excel file (such as font, color,
background color, alignment, etc.). To do this, just build the Excel file template in advance, define the
format, and then export data to the file.

As shown below, write the table name in the first row of sheet1 in the orders.xlsx file, the column
names in the second row, and define some style attributes for the table name and each column. The
first, third and fourth columns is centrally aligned, the second column is left aligned, and the fifth
column the right aligned. The display format of the fourth column is"yyyy-mm-dd", and that of the
fifth column is "#,###.00".

557

15.12 Specify display attributes

The exported Excel file:

The SPL script is the same as that for the previous example in 15.7. The exported result is shown below. When exporting to
an existing file, the last non empty line of the file will be overwritten to be used as the header. The style attributes defined in
the original file will be retained (not supported in stream-style export of a large amount of data).

A

1 =file("orders.txt":"UTF-8").import@t()

2 =file("orders.xlsx").xlsexport@t(A1)

SPL script:

558

15.13 Fill in the specified cell or area of an xlsx file

SPL also provides a way to read or write a specified cell or a block of cells in an Excel file.
You can fill in data to an Excel of a fixed format, such as the following Excel file:

The exported Excel file:

559

15.13 Fill in the specified cell or area of an xlsx file

SPL script:

A B C D E F

1
Mengniu funds c
ompany

2012 3 58.2 364 300

2 8.5 50 200 100 400 200
3 182.6 76.3 43.7 28.5 16.4
4 120 1.07 30 0.27 90 0.8
5 154 6 4

6 =file("result.xlsx") =A6.xlsopen()

7 =C6.xlscell("B2",1;A1) =C6.xlscell("J2",1;B1) =C6.xlscell("L2",1;C1)

8 =C6.xlscell("B3",1;D1) =C6.xlscell("G3",1;E1) =C6.xlscell("K3",1;F1)

9 =C6.xlscell("B6",1;[A2:F2].concat("\t")) =C6.xlscell("H6",1;[A3:E3].concat("\t"))

10 =C6.xlscell("B9",1;[A4:F4].concat("\t")) =C6.xlscell("B11",1;[A5:C5].concat("\t"))

11 =A6.xlswrite(C6)

It is assumed that the data to be filled in has been calculated (in the first 5 rows). The first six cells to be filled in the sample
table are all independent, so only one cell can be filled in at a time. The sixth row has cells that can be filled in consecutively.
We can concatenate the data to be filled in into a string separated by \t, which can be filled in starting from the specified
cell in order. After all data is filled in, write the Excel object in C6 back to the result.xlsx file.

560

15.14 Export row-style report to xlsx file

Export a row-style report of complex format to an xlsx file.
Export orders list to xlsx file with the following requirements: show the background color
of the data rows alternately in two colors; display cells with the order amount greater than
2000 in red, and those with the order amount less than 500 in green.

561

15.14 Export row-style report to xlsx file

Implementation steps:
Open RaqReport designer and create a new
report template "orders.rpx", the screenshot
is as follows:

Suppose the name of the dataset passed from
esProc is ds1, and the data rows start from the
third row of the report. For the usage of the
RaqReport, please refer to the RaqReport tutorial.

Select all the cells in the third row and write the
background color expression as if(row()%2==0,-
853778,-1) to specify the two background colors
to be displayed alternately.

Select the last cell in the third row, specify the
display format as #.00, write the foreground color
expression as if (value()>2000, -65536, if (value()
<500, -16711936, -16777216)) to display different
font colors according to different amounts.

562

15.14 Export row-style report to xlsx file

A1 Read the table sequence to be exported;

A2 Configure the report environment, including mainly the report

main directory and license file. You can copy the licensing XML file

from the report installation directory;

A3 Open the report template;

A4 Pass the table sequence in A1 as dataset ds1 to report object

A3 for calculation;

A5 Export the calculated report object A3 into an Excel file.

The exported Excel file:

A

1 =file("orders.txt":"UTF-8").import@t()

2 >report_config("E:\\report\\raqsoftConfig.xml")

3 =report_open("orders.rpx")

4 =report_run(A3;A1:"ds1")

5 =report_exportXls@x(A3,"rpt.xlsx")

SPL script:

563

15.15 Export multi-level grouped report to xlsx file

Create a multi-level grouped report using RaqReport and export it to an xlsx file.

Export a multi-level grouped Orders Statistical Table to an xlsx file according to the specified format,

such as follows:

564

15.15 Export multi-level grouped report to xlsx file

Implementation steps:
Open RaqReport designer and create a new report template "orders_group.rpx", the
screenshot is as follows:

565

15.15 Export multi-level grouped report to xlsx file

A

1 =file("orders.txt":"UTF-8").import@t()

2 >report_config("E:\\report\\raqsoftConfig.xml")

3 =report_open("orders_group.rpx")

4 =report_run(A3;A1:"ds1")

5 =report_exportXls@x(A3,"rpt.xlsx")

Similar to the previous example, the dataset passed
to the report is named ds1, which is grouped by area
in A3 and by company name in B3, and where the
order details are displayed in C3, D3 and E3. The
total order amount of each company is calculated in
E4, and the total order amount of each area is
calculated in E5.

The exported Excel file:

SPL script:

566

15.16 Export crosstab report to xlsx file

Create a crosstab report using RaqReport and export it to an xlsx file.

Export a Orders Cross Statistical Table to an xlsx file according to the specified format, such as follows:

567

15.16 Export crosstab report to xlsx file

A

1 =file("orders.txt":"UTF-8").import@t()

2 >report_config("E:\\report\\raqsoftConfig.xml")

3 =report_open("orders_cross.rpx")

4 =report_run(A3;A1:"ds1")

5 =report_exportXls@x(A3,"rpt.xlsx")

Implementation steps:
Use RaqReport designer to edit report template
"orders_cross.rpx", as shown on the right:

Similar to the previous example, the dataset
passed to the report is named ds1, which is
grouped by year of orders in B2 and by area in A3.
B3 counts the total order amount of each
subgroup.

The exported Excel file:

SPL script:

568

15.17 Combine multiple xlsx files of same structure

Read multiple xlsx files of same structure, merge them and export the data to one xlsx file.
Combine data in all xlsx files under E:/work/excel/ directory and export the result to total.xlsx.

569

15.17 Combine multiple xlsx files of same structure

Note: Here we do the illustration using files of simple

format. For files of complicated formats, please refer

to the parsing methods explained in previous

chapters.

A1 Define the directory where the Excel files to be processed are located;

B1 Open the target file to which data is exported after combination;

A2 List the names of all xlsx files in the directory;

A3 Loop through the listed files;

B3 Read the first Excel file into a table sequence;

B4-C5 Export the table sequence in B3, with column header exported for the first

time.

SPL script:

A B C

1 >dir="E:/work/excel/" =file(dir+"total.xlsx")

2 =directory(dir+"*.xlsx")

3 for A2 =file(dir+A3).xlsimport@t()

4 If #A3==1 =B1.xlsexport@t(B3)

5 else =B1.xlsexport@a(B3)

570

15.18 Split an xlsx file and export it to different xlsx files

Group data in an xlsx file and export it to different xlsx files.
Export data of different kinds of parts stored in orders.xlsx to a set of corresponding xlsx files.

571

15.18 Split an xlsx file and export it to different xlsx files

A B

1 >dir="E:/work/excel/"

2 =file("orders.xlsx").xlsimport@t() =A2.group(partName)

3 for B2 =file(dir+A3(1).partName+".xlsx").xlsexport@t(A3)

Note: Here we do the illustration using files of

simple format. For files of complicated formats,

please refer to the export methods explained

in previous sections.

A2 Read all data;

B2 Group by partName;

A3 Export the order information of each part in loop;

B3 Export the information of each part to a file named after

the part.

SPL script:

572

SPL
COOKBOOK

Using JSON and XML data

Chapter 16

573

The following is product information of JSON format:

[{"PRODUCT_ID":1,"PRODUCT_NAME":"Apple Juice",
"SUPPLIER_ID":2,"CATEGORY_ID":1, …},
{"PRODUCT_ID":2,"PRODUCT_NAME":"Milk",
"SUPPLIER_ID":1,"CATEGORY_ID":1, …},
{"PRODUCT_ID":3,"PRODUCT_NAME":"Tomato sauce",
"SUPPLIER_ID":1,"CATEGORY_ID":2, …},
{"PRODUCT_ID":4,"PRODUCT_NAME":"Salt",
"SUPPLIER_ID":2,"CATEGORY_ID":2, …},
…]

Import data from a single-layer JSON file.

16.1 Import single-layer JSON file

574

SPL only needs a simple one-line script to import a JSON file:

=json(file("product.json").read())

Execution result is as follows:

PRODUCT_ID PRODUCT_NAME SUPPLIER_ID CATEGORY_ID …

1 Apple Juice 2 1 …

2 milk 1 1 …

3 Tomato sauce 1 2 …

4 salt 2 3 …

… … … … …

16.1 Import single-layer JSON file

575

The following is the order information of JSON format. It has two layers: the first layer is the
country and area, and the second is the detailed data.
Import orders from north and south China in 2013.

[{"COUNTRY":"China","AREA":"Northeast China","ORDERS":[
{"ORDER_ID":10252,"CUSTOMER_ID":"SUPRD", "ORDER_DATE":2012-07-11, …},
{"ORDER_ID":10318,"CUSTOMER_ID":"ISLAT", "ORDER_DATE":2012-07-25, …},
…]},
{"COUNTRY":"China","AREA":"East China","ORDERS":[
{"ORDER_ID":10249,"CUSTOMER_ID":"TOMSP", "ORDER_DATE":2012-07-05, …},
{"ORDER_ID":10251,"CUSTOMER_ID":"VICTE", "ORDER_DATE":2012-07-08, …},
…]},
…]

Import data from a two-layer JSON file where the detailed data has a consistent
structure.

16.2 Import multi-layer JSON file with same-structure detailed data

576

Define parameters Country, Area and Year. You just need to modify the
corresponding parameter value instead of the SPL script when importing a
different country, area or year later. Note that the Area value is a sequence,
so that the data of multiple areas can be read at the same time. As shown
below:

Name Value

Country China

Area [North China, South China]

Year 2013

16.2 Import multi-layer JSON file with same-structure detailed data

577

The SPL script is as follows:

A B

1 =json(file("orders.json").read()) =A1.select(COUNTRY==Country &&
Area.contain(AREA))

2 =B1.news(ORDERS;COUNTRY,
AREA,${B1.ORDERS.fname().concat@
c()})

=A2.select(year(ORDER_DATE)==Yea
r)

16.2 Import multi-layer JSON file with same-structure detailed data

578

First, import the multi-layer JSON file:

=json(file("orders.json").read())

COUNTRY AREA ORDERS

China Northeast China [[10252,SUPRD,4,...],[10315,ISLAT,4,...],...]

China East China [[10249,TOMSP,6,...],[10251,VICTE,3,...],...]

China Central China [[10254,CHOPS,5,...],[10265,BLONP,2,...],...]

China North China [[10248,VINET,5,...],[10250,HANAR,4,...],...]

China South China [[10287,RICAR,8,...],[10296,LILAS,6,...],...]

ORDER_ID CUSTOMER_ID EMPLYEE_ID …

10287 RICAR 8 …

10296 LILAS 6 …

… … … …

16.2 Import multi-layer JSON file with same-structure detailed data

579

The Year and Area fields are in the first layer, so we can directly select the data of
North China and South China.

=A1.select(COUNTRY==Country && Area.contain(AREA))

The result is as follows:

COUNTRY AREA ORDERS

China North China [[10248,VINET,5,...],[10250,HANAR,4,...],...]

China South China [[10287,RICAR,8,...],[10296,LILAS,6,...],...]

16.2 Import multi-layer JSON file with same-structure detailed data

580

=B1.news(ORDERS;COUNTRY, AREA,${B1.ORDERS.fname().concat@c()})

Generate a table sequence with the filtering result, which contains fields including country, area,
order_id, etc. The result is as follows:

COUNTRY AREA ORDER_ID CUSTOMER_ID EMPLOYEE_ID ORDER_DATE

China North China 10248 VINET 5 2012-07-04

China North China 10250 HANAR 4 2012-07-08

China North China 10253 HANAR 3 2012-07-10

China North China 10255 RICSU 9 2012-07-12

Here news() function uses macro in one of its parameters. A macro uses ${} to enclose the expression. SPL will

calculate the macro expression first, and then replace ${} with the calculated result as a string value. Actually A2 is

equivalent to =B1.news(ORDERS;COUNTRY, AREA, ORDER_ID, CUSTOMER_ID, EMPLOYEE_ID, ORDER_DATE, …)

16.2 Import multi-layer JSON file with same-structure detailed data

581

Finally，select records where the order year is 2013 from the table sequence.

=A2.select(year(ORDER_DATE)==Year)

The final result is as follows:

COUNTRY AREA ORDER_ID CUSTOMER_ID EMPLOYEE_ID ORDER_DATE

China North China 10402 ERNSH 8 2013-01-02

China North China 10403 ERNSH 4 2013-01-03

China North China 10404 MAGAA 2 2013-01-03

China North China 10407 OTTIK 2 2013-01-07

16.2 Import multi-layer JSON file with same-structure detailed data

582

The detailed data of a JSON file may be of different structures because of the complexity of
data sources. In the following sales data: the first layer takes year and month as the
dimension, the second layer takes country as the dimension, and the third layer is detailed
data. But in the detailed data, due to different sales channels, the data structure is not
completely consistent.
Import sales data for 2017 and 2018 in the US and Canada.

[{"YEAR":2016,"MONTH":1,"SALES":
[{"COUNTRY":"Germany","SALES":
[{"ORDERNUMBER":10101,"QUANTITYORDERED":25,"PRICEEACH":100,"ORDE
RLINENUMBER":4,"SALES":3782,"ORDERDATE":"1/9/2016 0:00", …}, …], …],
{"YEAR":2016,"MONTH":2,"SALES":
[{"COUNTRY":"Denmark","SALES":
[{"ORDERNUMBER":10105,"QUANTITYORDERED":50,"PRICEEACH":100,"ORDE
RLINENUMBER":2,"SALES":7208,"ORDERDATE":"2/11/2016 0:00", …}, …], …],
…]

Read data from a multi-layer JSON file where the detailed data has an inconsistent
structure.

16.3 Import multi-layer JSON file with different-structure detailed data

583

We'll define two parameters - Year and Country, for the convenience of
calculation.

Name Value

Year [2017, 2018]

Country [USA, Canada]

First we need to determine the structure of the detailed data. In this example, we want to list
all the fields. If the detailed data does not contain a certain field, it is set to null. For example,
the addressline2 field is missing from the following data:

YEAR COUNTRY ORDERNUMBER ADDRESSLINE1 ADDRESSLINE2

2017 USA 10353 2440 Pompton St.

2017 USA 10352 16780 Pompton St.

16.3 Import multi-layer JSON file with different-structure detailed data

584

The SPL script is as follows:

A B

1 =json(file("sales.json").read()) =A1.select(Year.contain(YEAR))

2 =B1.news(SALES;YEAR,MONTH,COUNTR
Y,SALES)

=A2.select(Country.contain(COU
NTRY))

3 for B2 =A3.SALES.fname()&B3

4 =B2.news(SALES; YEAR,
COUNTRY,${B3.concat@c()})

16.3 Import multi-layer JSON file with different-structure detailed data

585

First, import the multilayer JSON file. Since the Year field is in the first layer, we can
directly select the data of 2017 and 2018:

=json(file("sales.json").read()) =A1.select(Year.contain(YEAR))

YEAR MONTH SALES

2017 1 [[France,[10211,41,100, ...],[10211,41,100, ...], ...], ...]

2017 2 [[Australia,[10223,37,100, ...],[10223,47,100, ...], ...], ...]

2017 3 [[Australia,[10227,25,100, ...],[10227,31,48.52, ...], ...], ...]

2017 4 [[Canada,[10235,24,76.03, ...],[10235,23,96.29, ...], ...], ...]

2017 5 [[Finland,[10247,44,100, ...],[10247,25,100, ...], ...], ...]

16.3 Import multi-layer JSON file with different-structure detailed data

586

Use the news() function to combine the year / month fields with the country and monthly sales details.

=B1.news(SALES;YEAR,MONTH,COUNTRY,SALES)

YEAR MONTH COUNTRY SALES

2017 1 France [[10211,41,100, ...],[10211,41,100, ...], ...]

2017 1 Japan [[10210,23,100, ...],[10210,34,100, ...], ...]

2017 1 Spain [[10212,39,100, ...],[10212,33,100, ...], ...]

2017 1 UK [[10213,38,94.79, ...],[10213,25,83.39, ...], ...]

2017 1 USA [[10215,35,100, ...],[10209,39,100, ...], ...]

16.3 Import multi-layer JSON file with different-structure detailed data

587

B2:Select data of US and Canada using A2.select(Country.contain(COUNTRY)).
A3~A4: Because the detail data may have different structures, we use full field names as
parameters to create a table sequence. The values of a field will be set according to the
name, and null values will be set by default if a field does not exist. （As the
"ADDRESSLINE1"field and " ADDRESSLINE2" field show below）:

YEAR COUNTRY ORDERNUMBER ADDRESSLINE1 ADDRESSLINE2

2017 USA 10353 2440 Pompton St.

2017 USA 10352 16780 Pompton St.

2017 USA 10352 16780 Pompton St.

2018 USA 10369

2018 USA 10362

2018 USA 10371

16.3 Import multi-layer JSON file with different-structure detailed data

588

The final result:

Now a multi-layer JSON file with different detailed data structure is transformed into a two-dimensional
table.

YEAR COUNTRY ORDERNUMBER QUANTITYORDERED PRICEEACH ORDERLINENUMBER

2017 USA 10215 35 100 3

2017 USA 10209 39 100 8

2017 USA 10215 46 100 2

2017 USA 10215 27 89.38 10

2017 USA 10215 33 43.13 9

2017 USA 10215 49 100 4

16.3 Import multi-layer JSON file with different-structure detailed data

589

Aggregate a set of sequences in a JSON file to get SUM.

Calculate the total sales amount in 2016 based on the sales data in JSON format.

[

{YEAR:2016,MONTH:1,SALES:[

{ORDERNUMBER:10101, ORDERLINENUMBER:4, SALES:3782, …},

{ORDERNUMBER:10102, ORDERLINENUMBER:1, SALES:3773.38, …},

…]

},

{YEAR:2016,MONTH:2,SALES:[

{ORDERNUMBER:10105, ORDERLINENUMBER:2, SALES:7208 …},

{ORDERNUMBER:10106, ORDERLINENUMBER:15, SALES:8690.36, …},

…]

},

…]

16.4 Nested aggregation

590

A B

1 =json(file("sales.json").read()) /Import JSON data

2 =A1.select(YEAR=2016) /Select sales data in 2016

3 =A2.field@r("SALES") /Get sales field values recursively

4 =A3.(~.sum()).sum()
/Use A.() to calculate the subtotal of each group in loop, and then
calculate the total sales

SPL script is as follows, where A.() is used do loop calculation:

A3 A4

Value

1252700.43

Member

[3782,3773.38,1404, …]

[7208,8690.36,4566.05,…]

[5265.15,6130.35,3485.82…]

[2793.86,9264.86,2082.49,
…]

Member

3782

3773.38

1404

…

16.4 Nested aggregation

591

Get the specified field in the JSON file recursively and combine all the members of the result.
Based on the JSON data of confirmed cases of new coronavirus on a certain day, count the total number of
confirmed cases worldwide.

[

{Region:"China",Confirmed:[

{Region:"Hubei",Confirmed:[

{Region:"Wuhan",Confirmed:51986},

{Region:"Xiaogan",Confirmed:3009},

{Region:"Huanggang",Confirmed:3791},

…]

},

{Region:"Taiwan",Confirmed:18},

…]

},

{Region:"Thailand",Confirmed:33},

…]

16.5 Get field values recursively & combine members of sequences recursively to get SUM

592

A B
1 =json(file("COVID-19.json").read()) /Import JSON data

2 =A1.field@r("Confirmed")
/Use @r option with A.field() function to get all"Confirmed"
field values recursively

3 =A2.conj@r()
/Use @r option with A.conj() function to combine members
of sequences recursively

4 =A3.sum() /Get the sum

SPL script is as follows, where A.conj@r() function merges members of sequences recursively:

A2

Member

[[51986,3009,3791],[58,…]

251

33

28

19

16

…

A4

Value

64438

A3

Member

51986

3009

3791

1447

1206

1125

…

16.5 Get field values recursively & combine members of sequences recursively to get SUM

593

Take the JSON file recording product order information as an example, update the parsed
table sequence to the Product table in the database.

[{"PRODUCT_ID":1,"PRODUCT_NAME":
"Apple Juice",
"SUPPLIER_ID":2,"CATEGORY_ID":1, …},
{"PRODUCT_ID":2,"PRODUCT_NAME":"
Milk",
"SUPPLIER_ID":1,"CATEGORY_ID":1, …},
{"PRODUCT_ID":3,"PRODUCT_NAME":"
Tomato sauce",
"SUPPLIER_ID":1,"CATEGORY_ID":2, …},
…]

JSON file:

Product

PRODUCT_ID

PRODUCT_NAME

SUPPLIER_ID

CATEGORY_ID

…

Database table:

Store the data in a JSON file to the database.

16.6 Store a JSON file to the database

594

It's very simple for SPL to import a table sequence into database. Just use db.update()
function to do that. The SPL script is as follows:

A

1 =json(file("product.json").read())

2 =connect("db")

3 =A2.update(A1, Product)

A1:Import JSON file as a table sequence.

A2:Connect data source.

A3:Use db.update() function to update the table sequence imported in A1 to the Product table in the database. Since the

primary key parameter is omitted in the update function, the update will be performed according to the primary key of the

database table Product. If the product table has no primary key, update the database according to A1's primary key. If both

haven't the primary key, update according to the first field.

16.6 Store a JSON file to the database

595

Take the JSON file recording the order information as an example. The JSON data has two layers: the first
layer is order, and the second layer is order details. Update the orders in and after 2018 and their details
to the order table and order details table respectively in the database.

[{"ORDER_ID":10248,"ORDER_DATE":"2012-07-04",...,"ORDER_DETAILS":[
{"PRODUCT_ID":17,"PRICE":14,"AMOUNT":12, …},
{"PRODUCT_ID":42,"PRICE":9,"AMOUNT":9, …},
…]}, …]

Order

ORDER_ID

ORDER_DATE

CUSTOMER_ID

EMPLOYEE_ID

…

OrderDetail

ORDER_ID

PRODUCT_ID

PRICE

AMOUNT

…

1 : N

Import data from a multi-layer JSON file and store it into multiple tables in the database.

16.7 Store a multi-layer JSON file to multiple database tables

596

The SPL script is as follows:

A B

1 =json(file("orders.json").read()) =A1.select(year(ORDER_DATE)>=2018)

2 =connect("demo")

3 =B1.fname().delete(B1.fname().l
en())

=A2.update(B1,Order,${A3.concat@c()})

4 =B1.conj(ORDER_DETAILS.deriv
e(B1.ORDER_ID:ORDER_ID))

=A2.update(A4,OrderDetail)

16.7 Store a multi-layer JSON file to multiple database tables

597

First, import the two-layer JSON file as a two-layer table too:

=json(file("orders.json").read())

ORDER_ID ORDER_DATE CUMSTOMER_ID ORDER_DETAILS

10248 2012-07-04 VINET [[17,14,12,...],[42,9,10,...],...]

10249 2012-07-05 TOMSP [[14,18,9,...],[51,42,4,...],...]

10250 2012-07-08 HANAR [[41,7,10,...],[51,42,3,...],...]

10251 2012-07-08 VICTE [[22,16,6,...],[57,15,15,...],...]

10252 2012-07-09 SUPRD [[20,64,40,...],[33,2,25,...],...]

PRODUCT_ID PRICE AMOUNT …

20 64 40 …

33 2 25 …

… … … …

16.7 Store a multi-layer JSON file to multiple database tables

598

The order date field is in the first layer. We can select the data of and after 2018 directly.

=A1.select(year(ORDER_DATE)>=2018)

The result is as follows:

ORDER_ID ORDER_DATE CUMSTOMER_ID ORDER_DETAILS

10808 2018-01-01 OLDWO [[56,38,20,...],[76,18,50,...]]

10809 2018-01-01 WELLI [[52,7,20,...]]

10810 2018-01-01 LAUGB [[13,6,7,...],[25,14,5,...],...]

16.7 Store a multi-layer JSON file to multiple database tables

599

After connecting to the database, first update the main table (order table). However, B1 has
one more ORDER_DETAILS field than the database table. Use B1.fname() to get all the field
names, and then delete the last member. When using the update function to update, you
need to specify the to-be-updated fields. The field parameter uses a macro.

=B1.fname().delete(B1.fname().len()) =A2.update(B1,Order,${A3.concat@c()})

B1

ORDER_ID

ORDER_DATE

CUSTOMER_ID

EMPLOYEE_ID

…

ORDER_DETAILS

Order

ORDER_ID

ORDER_DATE

CUSTOMER_ID

EMPLOYEE_ID

…

update

16.7 Store a multi-layer JSON file to multiple database tables

600

=B1.conj(ORDER_DETAILS.derive(B1.ORDER_ID:ORDER_ID))

First, use the derive() function to add the order ID field to ORDER_DETAILS. Then use
conj() function to expand the ORDER_DETAILS field of each order and put them
together. Now we have an order details table with same structure as the database
order details table. The results are as follows:

ORDER_ID PRICE AMOUNT DISCOUNT ORDER_ID

56 38 20 0.15 10808

76 18 50 0.15 10808

52 7 20 0 10809

ORDER_DETAILS

[[56,38,20,...],[76,18,50,...]]

[[52,7,20,...]]

derive

B1.conj(ORDER_DETAILS)

ORDER_ID PRICE AMOUNT DISCOUNT ORDER_ID

56 38 20 0.15 10808

76 18 50 0.15 10808

ORDER_ID PRICE AMOUNT DISCOUNT ORDER_ID

52 7 20 0 10809

ORDER_DETAILS

[[56,38,20,...],[76,18,50,...]]

[[52,7,20,...]]

16.7 Store a multi-layer JSON file to multiple database tables

601

=A2.update(A4,OrderDetail)

Finally, update the sub table order details. Since the data structure of A4 is consistent
with the database table, you don't need to specify the to-be-updated fields.

A4

ORDER_ID

PRODUCT_ID

PRICE

AMOUNT

DISCOUNT

OrderDetail

ORDER_ID

PRODUCT_ID

PRICE

AMOUNT

DISCOUNT

update

16.7 Store a multi-layer JSON file to multiple database tables

602

Parse and calculationImport JSON
Import table sequence into

database

First read in the JSON file,

and then use JSON ()

function to parse it into a

table sequence.

Analyze and calculate data of

each layer according to their

structure. SPL table sequence

provides a wealth of functions,

which can be used for various

operations.

Just use the db.update() function

to import the table sequence into

database. When a JSON file is

imported into multiple tables, the

update order is the main table and

then the sub table.

As we can see from the previous sections, the focus of using JSON data is the parsing and calculation. When dealing with multi-layer and

complex data with different structures, SPL can simply use "table. field" to reference members, and have rich functions to do calculations.

JSON data handling workflow

Summary

603

Output the data table as an XML string with only elements.

16.8 Output the data table as an XML string with only elements

604

A
1 =demo.query("select * from EMPLOYEE")

2 =xml(A1)

3 =xml(A2)

4 =xml(A2,"xml/row")

A2: Parse the table sequence

into XML string

A4: Get the content of the

<row> layer directly and return

a table sequence

Details

A3:Parse XML string into table sequence

Get the content of root node <xml>

The sub node of <xml> is

<row>

Element value under <row> node

A1:Query data table

SPL provides XML () function to deal with all kinds of XML data conveniently.

The processing method is as follows:

16.8 Output the data table as an XML string with elements only

605

⚫ Multiple books form the bookstore list

⚫ Each book may have multiple authors that need to be

merged as a sequence. There may be illegal characters in

copies that need to be parsed as numeric value.

Import an element-only XML file and organize it according to the specified format.

16.9 Import an element-only XML file and organize it according to specified format

606

A B

1 =file("/workspace/BookStore.xml") /Open xml file

2 =xml(A1.read(),"BookStore/Book") /Parse XML strings as records

3
=A2.new(title:title,if(ifa(author),author.concat("&"),author):autho

r,if(ifstring(copies),int(replace(copies,";","")),copies):copies,pric

e)

/Generate table sequence

Parsed as integer

A2: : Structured XMLUse & to concatenate multiple

values

result

The processing method is as follows:

16.9 Import an element-only XML file and organize it according to specified format

607

Import an XML file with both elements and attributes and organize it to structured data.

Use @s option with xml() function to parse XML

strings like <K F=v F=v …>D</K> into records with

K,F,… as fields, the value of K is D. When D has

multiple layers of contents, it's parsed as record

sequence. In case of <K …./K>, D is parsed as null.

In the case of <K…></K>, D is parsed as empty

string.

16.10 Import XML file with both elements and attributes

608

A
1 =file("/root/workspace/book.xml").read()

2 =xml@s(A1)

3 =xml@s(A1).bookstore

4 =A3.new(category,book(1).title:title,...)

A1: Read XML strings from file

A2: Parse into multi-
level sequence

The sub node is <book>,
attribute:<category>

Elements and attributes
under the < book > node

A4: Generate a new table sequence and get the
corresponding element values and attribute values

The processing method is as follows:

16.10 Import XML file with both elements and attributes

609

⚫ Each book may have multiple authors whose a name

attribute and country attribute need to be combined in

alignment into one column

⚫ You can perform filtering and grouping after the

structuralization

Import XML data with both elements and attributes, merge records in alignment and then perform filtering

16.11 Import XML file, perform alignment merging and then filtering

610

result1

result2

result3

1. Structuralize XML, in which author is list, and the values of name attribute and

country attribute need to be respectively concatenated with commas

2. Structuralize XML, in which the author is list, and the values of name attribute

and country attribute need to be combined in alignment into one column

3. On the basis of 2, select the book information in 2005 only

The processing method is as follows:

16.11 Import XML file, perform alignment combing and then filtering

611

SPL can directly parse and calculate XML. Its agile syntax system needs only several lines of code to get the requirements done.

A B

1 =file("/workspace/book1.xml") /Open the XML file

2 =xml@s(A1.read(),"library/book").library /Import XML data and obtain the node value

3
=A2.new(category,book.field("year").ifn():year,book.field("title").ifn():title,book.field("lang").ifn():l

ang,book.field("info").ifn():info,book.field("name").select(~).concat@c():name,book.field("countr

y").select(~).concat(","):country)

/Generate a new table sequence, obtain the values of each field

in the sequence while checking whether it is empty; A list value

needs to be concatenated as a string

4
=A3.new(title,category,year,(lang,name.array().(~+"[")++country.array().(~+"]")).concat@c():aut

hor,info)
/Generate a new table sequence, where the list column needs

to be added in alignment and then concatenated as a string

5 =A4.select(year==2005) /Perform filtering according to the condition on the basis of A4

A2:Decomposed process

16.11 Import XML file, perform alignment combing and then filtering

612

XML (x, s) function, where s represents the layer ID to be

fetched, layers are separated by /, and empty indicates fetching

from the root. When there are elements of different structures

under the node, s can be used to accurately get elements of a

certain layer.

Import the elements of the specified layer from an XML file with different element structure.

16.12 Import elements with different structure of the specified layer from an XML file

613

A

1 =file("/root/workspace/book.xml").read()

2 =xml(A1,"list/book")

3 =xml(A1,"list/audio")

A1:Read XML strings from file

A2: Fetch the contents of the <book>
layer and return a table sequence

A3: Fetch the contents of <audio> layer
and return a table sequence

The processing method is as follows:

16.12 Import elements with different structure of the specified layer from an XML file

614

⚫ List of multiple items
⚫ Each item has a fixed number of tables,

and the tables are different. Each table has
a variable number of rows

Import elements of the specified layer from an XML file with different sub-node element structure.

16.13 Import elements of the specified layer from an XML file with different sub-node element structure

615

table1

table2

List...

The processing method is as follows:

16.13 Import elements of the specified layer from an XML file with different sub-node element structure

616

Specify the level ID in the function to obtain the element values of this level accurately.

A B

1 =file("/workspace/items.xml") /Open the XML file

2 =xml(A1.read(),"list/item/table1") /Import XML data and obtain the node values

3 =A2.news(row; A2.#:ItemID, row.column1:column1, row.column2:column2) /Expand the set to generate a new table sequence

4 =xml(A1.read(),"list/item/table2")
/Parse the record with XML string as a field, and obtain the

node values

5
=A4.news(row; A2.#:ItemID, row.columnX:columnX, row.columnY:columnY,
row.columnZ:columnZ)

/Expand the set to generate a new table sequence

A3: Decomposed process

A6: Decomposed process

16.13 Import elements of the specified layer from an XML file with different sub-node element structure

617

The cities table is from MySQL database, and
the state data is from XML file. Join them then
group and aggregate to count the population
of each state.

cities

state.xml

Perform a join query over an XML file and a database table.

16.14 Join query over XML file and database data

618

cities

state.xml
result

We want to get the following result after the data is joined.

16.14 Join query over XML file and database data

619

SPL can directly read XML and MySQL data for mixed calculation; it provides a consistent calculation interface, and various data sources can be calculated in a unified

style.

A B

1 =Mysql.query("select * from cities where STATEID<=2") /Query cities table

2 =xml(file("/workspace/state.xml").read(),"data/state")
/Parse the record with XML string as a field, and obtain the

node value

3 =A2.new(STATEID,NAME,ABBR).keys(STATEID) /Generate a table sequence and set primary key

4 >A1.switch(STATEID,A3:STATEID) /Switch STATEID to corresponding records

5 =A1.groups(STATEID.NAME:STATE;sum(POPULATION):POPULATION) /Group and aggregate

Executed A4

A3:Structuralized XML data

16.14 Join query over XML file and database data

620

⚫ There are multiple XML files in the directory,

and each XML has the same structure

⚫ Batch parsing and structuring

result

Xml file
directory

Q1_2015_person.xml
Q2_2015_person.xml
Q3_2015_person.xml
Q4_2015_person.xml
...

person.xml
Parse all XML files in the specified directory in batches.

16.15 Parse XML data in batches

621

result

A B

1 =directory@p("/workspace/tmp/*.xml")
/List file names that match the
wildcard path

2 =A1.(xml(file(~).read())) /Parse each XML string as a record

3 =A2.conj(~.array()) /Merge each sequence

A1:XML files in the specified directoryA2:Import each XML file in loop

The processing method is as follows:

16.15 Parse XML data in batches

622

⚫ Call the external Web Service according to the passed in parameters to return the weather

conditions of the region

⚫ Structuralize the XML result set

Web Service

result

weather.xml

"http://www.webxml.com.cn/WebServices/Wea
therWebService.asmx/getWeatherbyCityName?
theCityName=%E4%BF%A1%E9%98%B3":"UTF-8"

Call external Web Service according to parameters to get XML file data and structuralize the result set.

16.16 Call external Web Service according to parameters and import XML data

623

The processing method is as follows:

A B

1
=wsdl=concat("\"http://www.webxml.com.cn/WebServices/WeatherWebService.asmx/g
etWeatherbyCityName?theCityName=",urlencode(argCity,"UTF-8"),"\":\"UTF-8\"")

/Based on passed in parameter
argCity, concatenate the complete
wsdl url

2 =httpfile(${wsdl}) /Construct httpfile

3 =xml(file(A2).read(),"ArrayOfString/string") /Parse XML data

4 =create(${A1.(concat("str",#)).concat@c()}) /Create an empty table sequence

5 >A4.record(A3) /Fill records in table sequence

weather.xml

"http://www.webxml.com.cn/WebServices/Wea
therWebService.asmx/getWeatherbyCityName?
theCityName=%E4%BF%A1%E9%98%B3":"UTF-8"

argCity=Xinyang ，A1: Concatenated url

List...

16.16 Call external WebService according to parameters and import XML data

624

⚫ An XML file contains multiple label structures, each

of which has the label attributes with same number

of columns

⚫ Get corresponding data to create different reports

according to different parameters

big.xml

Get different data from an XML file according to parameters.

16.17 Get different data from XML file according to parameters

625

report1

report2

arg=book， Extract data labeled book

arg=audio， Extract data labeled audio

big.xml

List...

The processing method is as follows:

16.17 Get different data from XML file according to parameters

626

After SPL parses an XML file, its agile syntax system can complete the logical judgments with only a few lines of code. And its unique macro mechanism greatly improves the code

reusability.

A B C

1 =file("/workspace/big.xml") /Open the XML file

2 =xml@s(A1.read()) =${arg}=null /A2:parse XML data; B2:Dedine the macro variable arg, which is null by default

3 =A2.library /Get library node value

4 for A3 if(A4.fname(1)==arg) /A4:Loop the nodes; B4:Judge the first field name according to the parameter

5
=${arg}=if(${arg}==null,create(category,${A4.${arg}.conj(~.fname()).concat@c(

)}).record(A4.${arg}.conj(~.array()).insert(1,A4.category)),${arg}.record(A4.${ar

g}.conj(~.array()).insert(1,A4.category)))

6 =${arg}=${arg}.new(category,title,lang,name,country,year)

A3: Get library node values as sequence
C5: When the loop variable is empty for the first time, create the columns contained in the empty table sequence, then insert a

record into the empty table sequence, and then insert records until the end.

A6:Generate a new table sequence， return the general columns

required by the report

16.17 Get different data from XML file according to parameters

627

SPL
COOKBOOK

Unstructured text handling

Chapter 17

628

17.1 Organize a multi-line, fixed-structure text

Organize multi-line fixed-structure records in a text file into structured data.

For example, in student.txt , every three lines is a record, and the adjacent records are separated by a blank line.

Read in the file and organize it into structured data.

1
Mike
17

2
Rose
16

3
Smith
15

4
Mary
14

ID

Name

Age

Field name

629

For the multi-line text with fixed structure, just read it as a sequence, remove the redundant empty rows, and then insert the

members into the target table sequence correspondingly. SPL script is as follows:

17.1 Organize a multi-line, fixed-structure text

A B

1 =file("D:\\student.txt") /Open the file

2 =A1.read@n() /Read data into sequence by line

3 =A2.select(~!="") /Remove blank lines between records

4 =create(ID,Name,Age) /Create table structure

5 =A4.record(A3) /Populate A3's sequence into the table
structure

By default, the whole text will be read as a large text string. Here @n option is
used to read the text as a sequence line by line, with each line as a member.

630

The mail's content occupies an
indefinite number of lines.

17.2 Organize a varied structure text

Organize texts where a record consists of an indefinite number of lines into structured data.
For example, in mail.txt, there are sender, receiver, date and mail content. The content may contain multiple lines of
information.

Sender:
Melody<Melody@bus.emory.edu>
Receiver:
Susan<Susan@google.com>
Date:
1/14/2020
Content:
Do you Yahoo!?
SBC Yahoo! DSL - Now only $29.95 per month!

Sender:
Tom<Tom@163.com>
Receiver:
rose<rose@163.com>
Date:
2/24/2020
Content:
IMPORTANT NOTICE:
The information in this email (and any attachments) is
confidential.
If you are not the intended recipient, you must not use or
disseminate
the information. If you have received this email in error,
please
immediately notify me by "Reply" command and
permanently delete
the original and any copies or printouts thereof.

Sender

Receiver

Date

Content

1
2
3
4
5
6
7
8

Field name

9

631

After importing a txt file with a varied structure into a sequence, you need to combine the lines with an indefinite

length into one row and then fill values into the table structure correspondingly.

17.2 Organize a varied structure text

A B

1 =file("D:\\mail.txt") /Open the file

2 =A1.read@n().select(~!="") /Read it as a sequence and remove
blank lines

3 =A2.group@i(~=="Sender:") /Each line starting with Sender: and
its subsequent lines forms a group

4
=A3.new(~(2):Sender,~(4):Recei
ver,~(6):Date,~.to(8,).concat():
Content)

/Extract values of record, merge the
body, and create a new table
structure

5

~.to(8,) Parameter 8 means starting from line 8 of the current group; the absence of
the second parameter means getting all subsequent lines. .concat() merges the
current sequence of lines into a single row.

632

The following is the startup log of a video software（ QQLive.log).

[18-08-13 13:50:21][13104]-
[0ms][QQLiveMainModule.dll][CQQLiveModule::ParseComman
dLine] cmd="C:\Program Files
(x86)\Tencent\QQLive\QQLive.exe"
[18-08-13 13:50:21][13104]-
[78ms][QQLiveMainModule.dll]QQLiveDaemon:RegAllHotKey:
Default Bosskey Registered.
[18-08-13 13:50:21][13104]-[78ms][QQLiveMainModule.dll]ctrl
+ alt + shift + 5 Registered
[18-08-13 13:50:21][13104]-[78ms][QQLiveMainModule.dll]ctrl
+ alt + shift + 6 Registered
[18-08-13 13:50:21][13104]-[78ms][QQLiveMainModule.dll]ctrl
+ alt + shift + 7 Registered

17.3 Parse text with regular expression and organize it into structured data

Parse text with regular expression and organize it into structured data.

For example, organize data in QQLive.log into structured data.

633

In the log, each line corresponds to a record. Lines are automatically separated in this example. The

yellow part in the figure on the previous page is a single line of data (same structure for the following

lines).

It is impossible to use a simple separator to split the lines. Besides, the content contains redundant

brackets ([]), minus signs (-), characters (ms), etc.

In this case, a regular expression is used to do the splitting. SPL code is as follows:

17.3 Parse text with regular expression and organize it into structured data

A B

1
\[(.*)\]\[(.*)\]-
\[(.*)ms\]\[(.*)\]\[(.*)\](.*)

/Define a regular expression

2 =file("D:/QQLive.log").read@n() /Open the log file, and read the
contents as a sequence by line

3 =A2.regex(A1)
/Use regex, the regular function for
handling sequences, to do the
splitting to get fields

634

The following is a software monitoring log（ raq.log).

[2018-05-14 09:20:20]
SEVERE: Load library module.dll failed.

[2018-05-14 09:20:21]
DEBUG: Temporary file directory is:
D:\temp\esProc\nodes\127.0.0.1_8281\temp.
Files in temporary directory will be deleted on
every 12 hours.

[2018-05-14 09:20:21]
INFO: Server is succeed :started.

17.4 Parse text with regular expression and organize it into structured data
(One record corresponds to multiple lines)

Parse text with regular expression and organize it into structured data. One record is composed of indefinite lines of
text.

635

Here an indefinite number of lines corresponds to one record.

The record boundary needs to be determined first by judging whether a line starts

with the left bracket. Then merge members in a group into one string and use

regular expression to split it.

SPL script is as follows:

17.4 Parse text with regular expression and organize it into structured data
(One record corresponds to multiple lines)

A B

1 =file("D:/raq.log").read@n() /Open the log file, and read the contents
into a sequence by line

2 =A1.select(~!="") /Filter away blank lines

3
=A2.group@i(like(~,"[*")) .(~.concat(
))

/Group by record content and concatenate
members in a group into a string

4 \[(.*)\] ([A-Z]+):(.*) /Define a regular expression

5 =A3.regex(A4) /Perform regular analysis

636

The following is a score cross table in CSV format（ scores.csv).

ID,Name,Math,Physics,Chemistry
1,Mike,67,87,72
2,Rose,80,90,84
3,Smith,90,88,76
4,Mary,88,67,77
5,Tod,55,70,87
6,Melody,40,90,55
7,David,90,65,80
8,Snoopy,100,90,85
9,Michale,70,78,55
10,Nikita,66,88,70

17.5 Read in text and perform transposition

Read in the crosstab data in a text file and then transpose it to structured data.

637

The file itself is structured data. It's a cross table of students' scores in each subject. Now you need to rearrange the

subjects and scores under the subject and score fields.

SPL script is as follows:

17.5 Read in text and perform transposition

A B

1 =file("D:/scores.csv") /Open the file

2 =A1.import@tc() /Import data

3
=A1.pivot@r(ID,Name;Subject,
Score)

/Transpose subjects and scores to
fields Subject and Score

4

638

In the log file, each line corresponds to a record. In the figure on the left,

lines are distinguished through the change of color . The corresponding 4

columns are named type, desc, file and status. The main points of splitting

are as follows:

1: It can't be separated simply by commas. You need to take the pairing of

quotes into consideration.

2:Desc contains subfields and is described as a segmented string.

3:Desc of each type is different. There is no subfield such as version when

the type is 1.

4:Desc is not a regular segmented string, where the first section is name

without section value.

The following is HPUpdate.exe.log for windows.

1,"fusion","GAC",0
1,"WinRT","NotApp",1
3,"System, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089","C:\windows\assembly\
NativeImages_v4.0.30319_64\System\01a3608d87251d7ea99
342a88d079c23\System.ni.dll",0
3,"System.Core, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089","C:\windows\assembly\
NativeImages_v4.0.30319_64\System.Core\2a6c39230fef9dfaf
c7ede45f99ec776\System.Core.ni.dll",0
3,"WindowsBase, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35","C:\windows\assembly\
NativeImages_v4.0.30319_64\WindowsBase\996cd1a75c20ce
6e697aad199323707b\WindowsBase.ni.dll",0
3,"PresentationCore, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35","C:\windows\assembly\
NativeImages_v4.0.30319_64\PresentationCore\6228d402fde
bfae866e84fdfe08773bf\PresentationCore.ni.dll",0

17.6 Organize a complex text file into structured data

Read data in complex text file and organize it into structured data.

639

17.6 Organize a complex text file into structured data

First, split the text into a basic table using the comma outside of

the quotes and rename the default field:

Splitting steps:

Then, split the desc field into a table sequence
consisting of name and value key pairs.

640

17.6 Organize a complex text file into structured data

From the table sequence of Desc key value pairs, Extract the key

with empty value to the Name column:

Splitting steps:

Then delete the corresponding name line from the key
pair table

641

Transpose the key pair table to facilitate merging the sub table

fields into the main table:

Splitting steps:

17.6 Organize a complex text file into structured data

The transposed sub tables are merged into the main table:

642

SPL script:

17.6 Organize a complex text file into structured data

A B

1
=file("D:/HPUpdate.exe.log").import
@qoc()

/Open and import the log file

2
=A1.rename(_1:Type,_2:Desc,_3:File,_
4:Status)

/Rename the default fields

3 =A2.run(Desc=Desc.property@c()) /Split desc into a key pairs table

4
=A3.derive(Desc.select(value=="").na
me:Name)

/Extract a Name column from key pairs

5
=A4.run(Desc.delete(Desc.pselect(val
ue:"")))

/Delete the corresponding name in the
key pair

6
=A5.run(Desc=Desc.pivot(;name,valu
e))

/Transpose the key pair table

7
=A6.news@1(Desc;Type,Name,Cultur
e,PublicKeyToken,Version,File,Status)

/Merge sub table to main table

@q option removes the quotation marks of each segmented

string; @o means that the quotation mark is an escape character,

otherwise the slash sign in the path will be regarded as the

default escape character; @c means using comma as the

separator.

When merging the sub table to the main table, if a row with type

1 matches no key pair, @1 option is used to left join the Desc key

pairs table by the main table.

643

Similar to the grep command that searches all text files in the specified directory(including
subdirectories) to find the lines containing keywords.

17.7 Search all text files in the specified directory to find the lines containing keywords

Traverse all text files in the specified directory to find the lines containing keywords.

644

Define two entry parameters. Path is the search root directory and key is the

keyword to be searched.

17.7 Search all text files in the specified directory to find the lines containing keywords

A B

1 =directory@ps(path+"/*.txt") /List all text files in the search
directory (including subdirectories)

2
=A1.run(file(~).read@n().run(if(
pos(~,key),output(A1.~/"
No"/#/"Row: "/~))))

/Read in the contents of each file,
compare with the keyword line by
line, and output corresponding
information

Run is a loop execution function, which traverses and executes

all files under the root directory. The second run is to traverse

and search the file content.

The logic of output is very simple. After finding it, print the

content of the line and line number. In SPL, use / instead of

not + to concatenate an integer with a string.

645

Given the root directory, replace the specified text in all text files under the path.

17.8 Replace string in all text files in a specified directory

Traverse all the files in the specified directory, find and replace the specified text and output the result.

646

17.8 Replace string in all text files in a specified directory

Three entry parameters are defined. path is the root directory,

source is the source string to be replaced, and target is the

target string to be replaced. SPL script is as follows:

A B C

1
=directory@ps
(path+"/*.txt")

/List all text files in the path
directory(including
subdirectories)

2 for A1 =file(A2).read@n() /Loop through all files in
the directory

3
=B2.run(~=replace(~,s
ource,target))

/Replace the content in
each file

4 =file(A2).write(B3) /Write out the replaced
content to the original file

647

Implement the wordcount algorithm. Given the text file, count the
number of each word's frequencies in the text.

17.9 Count the frequencies of each English word in a text file

Count the number of each word's appearances in a text file.

648

17.9 Count the frequencies of each English word in a text file

An entry parameter needs to be defined. filePath is the target file name

with path.

SPL script is as follows:

A B

1 =file(filePath).read() /Read in the content of the given file

2 =A1. words() /Split the content into a sequence of
words

3
=A2.groups(lower(~):Word;count(~
):Count)

/Convert all words to lowercase, group
them and count their frequencies

649

Here are some common network addresses
collected by a student（urls.txt ）. Sort it out to
delete the duplicate URLs.

17.10 Remove duplicate lines from a text file

https://123.sogou.com/
https://www.sogou.com/
https://stackoverflow.com/
https://123.sogou.com/
http://www.raqsoft.com.cn/
https://www.baidu.com/
https://www.sogou.com/
https://123.sogou.com/
https://stackoverflow.com/
http://www.raqsoft.com.cn/

Remove duplicate lines from a text file.

650

17.10 Remove duplicate lines from a text file

A B

1 =file("d:/urls.txt")) /Open the specified file

2 =A1.read@n() /Read file content by line as sequence

3 =A2.group@1() /Group by members of the sequence

4 =A1.write(A3) /Get the deduplicated content

@1 option returns only the first of the duplicate lines to obtain the
unique content.

Read the the file line by line and group them also by line. Get only the first of the duplicate lines. SPL script

is as follows:

651

Implement the wordcount algorithm. Given the text file, count the
frequencies of each English letter in the text.

17.11 Count the frequencies of each letter in a text file

Count the number of appearances of each English letter in a text file.

652

17.11 Count the frequencies of each letter in a text file

A B

1 =file(filePath).read() /Read in the content of the given file

2 =A1. split() /Split the content into a sequence of
words

3
=A2.groups(~:Char;count(~):C
ount)

/Group and count characters

SPL script is as follows:

653

Novels copied from online posts（novel.txt） often have duplicate paragraphs.

17.12 Remove duplicate paragraph from a text file

Remove duplicate paragraph from a text file.

654

17.12 Remove duplicate paragraph from a text file

A B

1 =file("d:/novel.txt")) /Open the specified file

2 =A1.read@n() /Read the contents by line as a
sequence

3 =A2.groups(~;min(#):k)
/Put rows with same content in same
group, keeping the smallest row
number only

4 =A3.sort(k) /Sort by row number

5 =A1.export(A4,~) /Write the sorted content to the
original file

6

Only keep the number of the first-found row
among the duplicates

Only the ~ field is exported. All fields will be
exported by default.

Deduplication of a novel should not disrupt its original content

order. Number the lines with condition min(#) and get only the first

of the duplicates and records number of the obtained line for

restoring the original content order.

655

SPL
COOKBOOK

String & datetime handling

Chapter 18

656

18.1 Concatenate strings in two columns

Concatenate strings in two columns into one column.

Get the full name and salary of R&D employees in New York. The employee table is as follows:

ID NAME SURNAME STATE DEPT SALARY

1 Rebecca Moore California R&D 7000

2 Ashley Wilson New York Finance 11000

3 Rachel Johnson New Mexico Sales 9000

4 Emily Smith Texas HR 7000

5 Ashley Smith Texas R&D 16000

… … … … … …

657

18.1 Concatenate strings in two columns

A B

1 =connect("db") /Connect to data source

2 =A1.query("select * from Employee") /Import employee table

3 =A2.select(STATE=="New York"&&DEPT=="R&D")
/Select employee records of R&D department in
New York

4 =A3.new(NAME+" "+SURNAME:FULLNAME, SALARY)
/Use the sign "+" to concatenate strings to form
full name

SPL script is as follows, in which the operator "+" is used to concatenate strings:

FULLNAME SALARY

Matthew Johnson 6000

Lauren Thomas 12000

Brooke Williams 12000

A4

658

18.2 Concatenate string and other type of value

Concatenate string and other type of value.

Here are two text files. Look for the string of text 1 in text 2 and output a result of the following format:

file1

like parks

went out

go out

file2

I like to go out because I like parks.

Ben does not go out much.

Shelly went out often but does not like parks.

Harry does not go out neither does he like parks.

Output

Q1. like parks

I

Shelly

Harry

Q2. went out

Shelly

Q3. go out

I

Ben

Harry

659

18.2 Concatenate string and other type of value

SPL script is as follows, where the symbol '/' is used to concatenate string and other type of value:

A B

1 =file("file1.txt").read@n() /Read text1

2 =file("file2.txt").read@n() /Read text2

3
=A1.conj(("Q"/#/". "/~)|A2.select(pos(~,
A1.~)).(~.words()(1)))

/Loop each of the strings in text 1to find it in text 2, and get the first word.
Then precede each group of result with Q and the sequence number of the
corresponding string in A1 and its content. The sequence number is an integer,
to which another type of value is concatenated using the symbol '/'.

A3 Member

Q1. like parks

I

Shelly

Harry

Q2. went out

Shelly

Q3. go out

I

Ben

Harry

660

18.3 Concatenate members in a sequence

Concatenate members in a sequence into a string.

Table A and table B have same structure. Use table B to update table A. When the primary key of

table B exists in table A, update the record; otherwise, add a new row.

ID Amount …

1 3063.0 …

2 3868.6 …

4 2713.5 …

… … …

ID Amount …

1 3063.0 …

2 4507.0 …

3 2713.5 …

… … …

Table A Table B

661

18.3 Concatenate members in a sequence

A B

1 =connect("db") /Connect to database

2
=A1.query("select COLUMN_NAME from
INFORMATION_SCHEMA.KEY_COLUMN_USAGE k where
k.TABLE_NAME='B'")

/Get the primary key of table B from the system
table. Each database has their own way to get the
primary key (Here take MSSQL as an example)

3 =pks=A2.(COLUMN_NAME)
/Define variable pks，which is a sequence of primary
key column names

4
=A1.query("select COLUMN_NAME from
INFORMATION_SCHEMA.COLUMNS c where c.TABLE_NAME='B'")

/Retrieve all columns of the table

5 =columns=A4.(COLUMN_NAME)
/Define variable columns, which is a sequence of
column names

6

="MERGE INTO A as t USING B as s ON
"+pks.("t."+~+"=s."+~).concat(" and ")+" WHEN MATCHED THEN
UPDATE SET "+(columns\pks).("t." + ~ +"=s." + ~).concat@c()+"
WHEN NOT MATCHED THEN INSERT VALUES("+columns.("s."+
~).concat@c()+")"

/Dynamically splice a "merge into" statement, where
A.concat function is used to concatenate members of
a sequence and return a string.

7 =A1.excute(A6) /Execute the "merge into" statement in A6

A.concat(d) function concatenates members of a sequence with the separator d and returns a string. @c option

indicates that comma is used to connect them. SPL script is as follows:

662

18.4 Add quotation marks to members when concatenating members of a sequence

Add quotation marks to members when concatenating members of a sequence.

Find the states where employees in each department work, and separate state names by spaces.

Since some states have space in their names, they should be distinguished by adding quotation

marks to them. The employee table is as follows:

ID NAME SURNAME STATE DEPT SALARY

1 Rebecca Moore California R&D 7000

2 Ashley Wilson New York Finance 11000

3 Rachel Johnson New Mexico Sales 9000

4 Emily Smith Texas HR 7000

5 Ashley Smith Texas R&D 16000

… … … … … …

663

18.4 Add quotation marks to members when concatenating members of a sequence

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Employee") /Import employee table

3 =A2.group(DEPT; ~.id(STATE):STATES)
/Group by department, get the unique state names in
each group

4 =A3.new(DEPT, STATES.concat@q(" "):STATES)
/Concatenate state names in each group into a string
using the A.concat() function; @q option adds double
quotation marks to string members.

Use @q option with A.concat() function to add double quotation marks to the string member when

concatenating members. Similarly, @i option adds single quotation marks to the string member when

concatenating members. SPL script is as follows:

DEPT STATES

Administration "Florida" "Pennsylvania"

Finance "California" "Colorado" "Florida" "Georgia" "Illinois" "Michigan"

"New Jersey" "New York" "North Carolina"

… …

A4

664

18.5 Convert a table sequence to CSV format

Convert a table sequence to CSV format, separate field values in each record

with commas.

Convert the Department table to CSV format and copy it to the system

clipboard. The table is as follows:

ID Name Manager

1 Administration 1

2 Finance 4

3 HR 5

4 Marketing 6

5 Production 7

… … …

665

18.5 Convert a table sequence to CSV format

A B

1 =connect("db") /Connect to database

2 =A1.query("select * from Department") /Import Department table

3 =A2.export@ct()
/Use A.export() function to concatenate members into a string.
@c option is used to generate the CSV format, and the @t
option is used to generate the header line.

4 =clipboard(A3) /Copy the string of A3 to the system clipboard

A.export() function concatenates members of as table sequence and returns a string. @t option

generates the header line, and @c option generates the CSV format. SPL script is as follows:

A2 A3 ID,Name,Manager

1,Administration,1

2,Finance,4

3,HR,5

…

ID Name Manager

1 Administration 1

2 Finance 4

3 HR 5

… … …

666

18.6 Split a string into a sequence of characters

<html>

<table cellpadding="2.5px" rules="all" style=";background-color: rgb(255,255,255);border: 1px

solid;border-collapse: collapse; border-color: rgb(187,187,187)">

<colgroup><col width="25px" style="background-color: rgb(218,231,245)" /><col /><col /><col

/><col /><col /><col /></colgroup>

<thead><tr style=" background-color: rgb(218,231,245);text-align: center;color:

rgb(22,17,32)"><th></th><th>A</th><th>B</th><th>C</th><th>D</th><th>E</th><th>F</t

h></tr></thead>

…

Split a string into a sequence of characters.

Count the number of commas outside the bracket in the source code of a web page. Part of the

source code is as follows:

667

18.6 Split a string into a sequence of characters

A B C B

1 =file("code.html").read() /Read the file as a string

2 =A1.split() 0 0 /A.split() splits the string into a sequence of characters

3 for A2 if A3=="[" =B2+=1
/If the left bracket appears, B2 plus 1. It is used to
match the bracket

4 else if A3=="]" =B2-=1
/If the right bracket appears, B2 minus 1. It is used to
match the bracket

5 else if A3==","&&B2==0 >C2+=1
/If a comma appears and the brackets match, add 1 to
C2'count. C2 is the number of commas outside
brackets

SPL script is as follows, where A.split() function is used to split the strings into a sequence of

characters :

C2 Value

27

A2 Members

<

h

t

m

…

668

18.7 Split strings into a sequence of words

How to Call an SPL Script in Java

esProc provides its own JDBC driver to become integration-friendly with a Java application. The

method of calling an esProc SPL script is similar to the execution of SQL queries and stored

procedures in Java.

Deploying esProc JDBC in a Java application

Simply put, to deploy JDBC in a Java application is to put in place the necessary jars and

configuration files for loading esProc when starting the application. esProc JDBC requires JDK 1.6 or

a higher version.

…

Split strings into a sequence of words.

Count the top three words in terms of frequencies in an article. Part of the article is as follows:

669

18.7 Split strings into a sequence of words

A B

1 =file("callSPL.txt").read() /Read the file as a string

2 =A1.words() / A.words() function splits the words away from the string

3 =A2.group() /Group words

4 =A3.ptop(-3;~.len()) /Select the top three words that appear most frequently

5 =A3(A4).(~(1)).concat@c() /Concatenate the top three words into a string with commas

A.words() function splits the string into a sequence of words. SPL script is as follows:

A5 Value

the,property,name

670

18.8 Use tab as a separator to split a string

Use tab as a separator to split a string into a sequence of strings.

Organize a log file into structured data（a table sequence consisting of fields of

USERID,UNAME,IP,TIME,URL,BROWSER,LOCATION, and MODULE）. Log format: the first line is IP, TIME, GET, URL, BROWSER;

the second line is MODULE; the third line is USERID, UNAME, LOCATION.

671

18.8 Use tab as a separator to split a string

A B
1 =file("log.txt").read@n() /Read the file as a sequence of strings by line

2 =A1.group((#-1)\3) /Use group function to group every three rows

3 =A2.(~.conj(~.split("\t")))
/Use s.split() function to split each line in each group by
"\t" and merges results into a sequence

4
=A3.new(~(7):USERID,~(8):UNAME,~(1):IP,~(2):TIME,~(4):URL,~(5)
:BROWSER,~(9):LOCATION,left(~(6).split(":")(2),-1):MODULE)

/Generate structured data

s.split(d) function splits the string s into sequences through the separator d. SPL script is as follows:

A4

USERID UNAME IP TIME URL BROWSER LOCATION MODULE

47356 Jessica 10.10.10.143 2013-04-01 21:14:44 /p/pt301/index.jsp Mozilla/6.0 Chicago production

419 Jacob 10.10.2.76 2013-04-01 21:18:50 /h/homepage.jsp Chrome/35 Houston homepage

… … … … … … … …

672

18.9 Use comma as the separator to split a string

Use comma as the separator to split a string into a sequence of strings.

Query names of the products purchased by customers, and separate multiple names with commas. Part of the product

table and sales table is as follows:

Product Sales

ID Customer Product

1 VINET R

2 TOMSP P,R

3 HANAR P,R,C

4 VICTE P

… … …

ID Name Website

R Report http://www.raqsoft.com.cn/r

P esProc http://www.raqsoft.com.cn/p

C esCalc http://www.raqsoft.com.cn/c

M AI Models http://www.yimming.com/

… … …

673

A4

18.9 Use comma as the separator to split a string

A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Product") /Read product table

3 =A1.query("select * from Sales") /Read sales table

4 =A3.run(Product=Product.split@c())
/Use @c option with the split function to split the products in
sales table into a sequence by comma to return

5 =A4.run(Product=Product.(A2.find(~).Name).concat@c())
/Get a sequence of product names by product ID, and
concatenate the members into a string with commas

s.split(d) function uses @c option to do the splitting. When d is omitted, split the string into single characters. SPL

script is as follows:

ID Customer Product

1 VINET [R]

2 TOMSP [P,R]

3 HANAR [P,R,C]

… … …

A5

ID Customer Product

1 VINET Report

2 TOMSP esProc,Report

3 HANAR esProc,Report,esCalc

… … …

674

18.10 Split a string into two segments by specified separator

Use "?" or "=" as the separator to split a string into two strings.

A website records the URLs visited by users. Query the most frequently used search criteria. Some contents

are as follows:

ID User Website

1 Rebecca https://github.com/search?q=How+to+study+java%3F

2 Ashley https://github.com/search?q=report&type=Code

3 Rachel https://github.com/search?q=bigdata&type=Repositories

4 Rachel https://github.com/search?l=Python&q=bigdata&type=Repositories

… … …

675

18.10 Split a string into two segments by specified separator

A B
1 =file("loginUrls.txt").import@t() /Read user login file

2 =A1.(Website.split@1("?")(2))
/Use @1 option with s.split() function to split a string into two
segments according to the first ?

3 =A2.(~.split("&").select@1(like(~,"q=*")))
/Split the parameter by & and select the criteria of q = * , which is the
user search criteria

4 =A3.(~.split@1("=")(2))
/Split the search criteria into two segments by = and the second part is
the search criteria

5 =A4.group() /Group by search criteria

6 =A5.maxp(~.len())(1)
/Select the group with the largest number of members, which is the
most frequently used search criteria

Use @1 option with s.split(d) function to find the first d and stop searching, which splits a string into two

segments. SPL script is as follows:

A6

Value

bigdata

676

18.11 Split a string with regular expression

Use a regular expressions to split a string into a sequence of strings.

Remove all comments (<! --- >) from the HTML file. Part of the contents are as follows:

<html>

<!-- Row Highlight Javascript -->

<script type="text/javascript">

window.onload=function(){

var tfrow = document.getElementById('tfhover').rows.length;

var tbRow=[];

…

};

…

</html>

677

18.11 Split a string with regular expression

A B
1 =file("table.html").read() /Read the html file

2 =A1.split@r("<!--.*-->")
/Use @r option with s.split() function to split the string according to the
regular expression

3 =A2.concat()
/Concatenate the strings after splitting, that is, the HTML format string
without comments

4 >file("table.html").write(A3) /Write the string to a file

@r option is used with s.split(d) function. d is interpreted as a regular expression. SPL script is as follows:

A3

Value

<html><script type="text/javascript">window.onload=function(){…

678

18.12 Parse a string into numerical value

Parse a string into numerical value.

The model performance table records various indexes of different models. We want to select the numerical target model

(ModelType is 2) and present it with the indexes as the column names. Part of the data is as follows:

ID ModelName ModelType Performance

1 HousePrice 2 SquareR=0.933743

2 HousePrice 2 MSE=295749426.986263

3 HousePrice 2 RMSE=17197.366862

4 HousePrice 2 GINI=0.197449

5 HousePrice 2 MAE=12509.456071

6 HousePrice 2 MAPE=7.798386

7 Titanic 1 GINI=0.654867

8 Titanic 1 AUC=0.827434

9 Titanic 1 KS=0.587658

… … … …

679

A5

18.12 Parse a string into numerical value

A B
1 =file("mps.txt").import@t() /Import model performance file

2 =A1.select(ModelType:2) /Select model type 2

3 =A2.group(ModelName) /Group by model name

4 =A3(1).(Performance.split("=")(1)).concat@c()
/Concatenate the first group of index names into a string with
commas

5 =create(${"ModelName,"+A4})
/Create an empty table sequence. The first column is the model name,
followed by the model performance indexes

6
=A3.(A5.record(A3.~.ModelName |
A3.~.(number(Performance.split("=")(2)))))

/Insert indexes into A5's table sequence in loop. Here we use the
number() function to convert the split string into a numeric value

number(stringExp) function is used to parse the string stringExp into a numeric value. SPL script is as follows:

ModelName SquareR MSE RMSE GINI MAE MAPE

HousePrice 0.933743 295749426.986263 17197.366862 0.197449 12509.456071 7.798386

… … … … … … …

680

18.13 Parse a percentage string into a numerical value

Parse a percentage string into a numerical value.

Based on the prediction results of Titanic survival probability model, calculate the proportion of female

among people with a survival probability over 80%. Part of the data is as follows:

Survived PassengerId Pclass Name Gender …

Percent:10.461% 624 3 Braund, Mr. Owen Harris male …

Percent:9.108% 625 3 Cumings, Mrs. John Bradley male …

Percent:8.891% 626 1 Heikkinen, Miss. Laina male …

Percent:50.510% 627 2 Futrelle, Mrs. Jacques Heath male …

… … … … …

681

A5

18.13 Parse a percentage string into a numerical value

A B
1 =file("titanic.csv").import@cqt() /Import Titanic data file

2 =A1.run(Survived=Survived.split(":")(2)) /Split the survival probability field by ":" and get the second part

3 =A2.run(Survived=number(Survived, "0%"))
/Use number() function to parse the value according to the
specified format

4 =A3.select(Survived > 0.8) /Select people with a survival probability of more than 80%

5
=string(A4.count(Gender=="female") / A4.len() ,
"0.000%")

/Calculate the proportion of females

number(stringExp, format) function is used to parse the string stringExp into a numerical value according to the

specified format. SPL script is as follows:

Value

97.619%

682

18.14 Automatically parse a string into the proper data type

Parse a string into the proper data type automatically.

According to the Olympic medal table, find the Olympic Games where China ranks higher than

Russia.

Game Nation Medal

30 USA [46,29,29]

30 China [38,27,23]

30 UK [29,17,19]

30 Russia [24,26,32]

30 Korea [13,8,7]

… … …

683

18.14 Automatically parse a string into the proper data type

parse(s) function parses string s into the proper data type. SPL script is as follows:

A B

1 =file("Olympic.csv").import@cqt() /Import Olympic games medal table

2 =A1.run(Medal=parse(Medal)) /Use parse() function to parse the medal field into a sequence

3 =A2.group(Game) /Group by Game

4
=A3.select(~.select(Nation=="China").Medal>~.selec
t(Nation=="Russia").Medal)

/Use ">" to compare the sequences of medals for China and Russia by
comparing the number of gold, silver and bronze in order, and select
the games where China ranks higher.

5 =A4.(Game) /List the games

A5 Game

23

25

28

29

30

684

18.15 Split a string and parse the split members into proper data types

While splitting a string, parse the split members into the proper data types.

There are course table and course selection table. Find the courses not selected by students. Multiple courses can be

selected that are separated by commas. Part of the data is as follows:

Course SelectCourse

ID STUDENTID COURSE

1 59 2,7

2 43 1,8

3 52 2,7,10

4 44 1,10

5 37 5,6

6 57 3

… … …

ID NAME TEACHERID

1 Environmental protection and … 5

2 Mental health of College Students 1

3 Computer language Matlab 8

4 Electromechanical basic practice 7

5 Introduction to modern life science 3

6 Modern wireless communication system 14

… … …

685

A6

18.15 Split a string and parse the split members into proper data types

A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Course") /Read course table

3 =A1.query("select * from SelectCourse") /Read course selection table

4 =A3.union(COURSE.split@cp())
/Use @p and @c options with split function to split the courses in the course
selection table by commas, parse them into integers, and get the union of the
sequences of courses by union() function

5 =A2.(ID) /Get IDs of all courses

6 =A2(A5.pos([A5,A4].diff()))
/Use diff() function to find the difference of course IDs in course table and course
selection table, that is, the unselected course. After locating the ID in A5, select the
corresponding record from A2

@p option is used with s.split() function to parse the split members into proper data types. SPL script is as follows:

ID NAME TEACHERID

1 Fundamentals of economic management 21

686

18.16 Parse string to table sequence

Parse a string into a table sequence.

The GDP and population data of major cities in China are copied from the system's clipboard. Export

them to a file of CSV format. Part of the contents are as follows:

ID City GDP Population
1 Shanghai 32679 2418
2 Beijing 30320 2171
3 Shenzhen 24691 1253
4 Guangzhou 23000 1450
5 Chongqing 20363 3372
6 Tianjin 18809 1557
7 Suzhou18597 1068
8 Chengdu 15342 1605
…

687

GDP.csv

18.16 Parse string to table sequence

A B
1 =clipboard() /Return the contents of the clipboard as strings

2 =A1.import@t()
/Read the strings into a table sequence. The separator is tab （\t） by default. @t option
means that the first line is the title

3 >file("GDP.csv").export@ct(A2) /Export A2's table sequence to GDP.csv file

S.import (;s) function is used to import the contents read from string S as records and return them as a table

sequence, where s is the separator (default is tab). @t option means that reading the first line as the title.

SPL script is as follows:

ID,City,GDP,Population
1,Shanghai,32679,2418
2,Beijing,30320,2171
3,Shenzhen,24691,1253
4,Guangzhou,23000,1450
5,Chongqing,20363,3372
…

688

18.17 Parse the string type field in a table sequence with regular expression

Parse the character string type field in a table sequence with regular expression.

Get the number from customer address. Part of the customer table is as follows:

ID Name City Address

1 VINET Beijing 124 Guangming North Road

2 TOMSP Jinan 543 Qingnian East Road

3 HANAR Qinhuangdao 22 Guanghua Street

4 VICTE Nanjing Qinglin bridge 68

… … … …

689

18.17 Parse the string type field in a table sequence with regular expression

A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Customer") /Read customer table

3 =A2.run(Address=number(Address.regex("\\D*(\\d+)\\D*")(1)))
/Use S.regex() function to get the street number from the
address and parse it into number

S.regex(rs) function searches for matching section in string S with regular expression rs, and returns null if no

matching part is found. SPL script is as follows:

A3 ID Name City Address

1 VINET Beijing 124

2 TOMSP Jinan 543

3 HANAR Qinhuangdao 22

… … … …

690

18.18 Parse indefinite-structure text with regular expression

Parse a text file with indefinite number of lines with the regular expression.

The log file contains an indefinite number of lines. Now we want to parse it into structured data. Part

of the log file is as follows:

691

18.18 Parse indefinite-structure text with regular expression

A B
1 =file("report.log").read() /Read the log file and return as string

2 =A1.split("Object Type:").delete(1)
/Split the text content into multiple records
according to the mark "Object Type:" and
discard the first record

3

=A2.regex("(.+)[\\s\\S]+left:(.+)[\\s\\S]+top:(.+)[\\s\\S]+right:(.+)[\\s\\S]+b
ottom:(.+)[\\s\\S]+Line Color:(.+)[\\s\\S]+Fill
Color:\\t\\t(.+)[\\S\\s]+Link:(.+)[\\s\\S]+Type: (.+)[\\s\\S]+Condition
Type:(.+)[\\s\\S]+Statement:\\s+(.+)[\\s\\S]+Link:(.+)[\\s\\S]+Type:
(.+)[\\s(\\S]+Expression :(.+)";ObjectType,left,top,right,bottom,lineColor,fill
Color,ojbectLink,type,conditionType,statement,statementLink,statementTy
pe,lastExpress)

/For each member, search for matching part
with regular expression, and concatenate
the results into a record

4 =file("result.txt").export@t(A3) /Export A3's result to result.txt

A.regex(rs,Fi) function searches for matching sections in the string members of sequence A with the regular

expression rs, and returns the results to form a table sequence with Fi as the fields. SPL script is as follows:

A3 ID ObjectType left top right bottom lineColor fillColor …

1 Symbol 695 51 723 75 RGB (0 0 0) RGB (255 255 0) …

… … … … … … … … …

692

18.19 Use code to parse string type fields in a table sequence

Use code to parse character string type fields in a table sequence.

Find the average salary of employees who were born in the 1980s. The age needs to be

extracted from the ID number. Part of the employee table is as follows:

ID Name Identification Salary

1 Rebecca Driving license:495319197411204628 7000

2 Ashley ID number:103263198007194980 11000

3 Rachel ID number:721125197012173641 9000

4 Emily ID number:619124198503071617 7000

5 Ashley ID number:248238197505138795 16000

… … … …

693

18.19 Use code to parse string type fields in a table sequence

A B
1 =connect("db").query("select * from Employee") /Connect to database and read employee table

2 =A1.run(Identification=Identification.regex("\\D*(\\d+)")(1)) /Use S.regex() function to read the number part of ID

3 =A2.run(Identification=mid(Identification,7,4))
/Use mid() function to read No.7 to No.10 digits of the ID, that
is, the year of birth

4 =A3.run(Identification=number(Identification)) /Use number() function to parse the year string into a number

5 =A4.select(Identification>=1980 && Identification <=1989) /Select employees born in the 1980s

6 =A5.avg(Salary) /Calculate the average salary

When a single function cannot solve the problem directly, multiple functions can be used to parse and process

strings step by step. SPL script is as follows:

A6 ID

7256.16

694

18.20 Modify the filter condition in the SQL statement

Modify the filter condition in the SQL statement.

The following SQL statement is used to select the employees in sales department whose salary is

greater than 10000. Modify the department in the filter condition to the R&D department.

select
EID,NAME,SURNAME,DEPT,SALARY

from
Employee

where
DEPT='sales' and SALARY>10000

695

A6

18.20 Modify the filter condition in the SQL statement

A B

1
select EID,NAME,SURNAME,DEPT,SALARY from
Employee where DEPT='sales' and SALARY>10000

/Define SQL constants

2 =A1.sqlparse@w() /Use @w option with s.sqlparse() function to get the where condition

3 =A2.split@t("and")
/Use s.split() function to split the where condition; @t option performs
trim over each segment

4 =A3.pselect(like(~,"DEPT*")) /Select the department condition

5 =A3(A4)="DEPT='R&D'" /Change the department condition to R&D

6 =A3.concat(" and ") /Concatenate members in the sequence of conditions with and

7 =A1.sqlparse@w(A6)
/Use @w option with s.sqlparse(part) function to replace the where
condition

s.sqlparse(part) function is used to split SQL into a sequence of individual parts. The part parameter is used to replace the

corresponding part of SQL and return the new SQL. @w option represents the where statement and @s represents the

select statement. SPL script is as follows:

Value

select EID,NAME,SURNAME,DEPT,SALARY from Employee where DEPT='R&D' and SALARY>10000

696

18.21 Translate standard SQL statements into specified database format

Translate standard SQL statements into the format used by the specified database.

The sales data of a company is stored in two databases, Oracle and MySQL. Find the number of orders with sales

over 1000 during the period from March 18 to July 18, 2015. The two database tables have same structure, as

shown below:

ORDERID CUSTOMERID EMPLOYEEID ORDERDATE AMOUNT

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

697

18.21 Translate standard SQL statements into specified database format

A B

1

select
ORDERID,CUSTOMERID,EMPLOYEEID,ORDERDATE,AMOUNT
from ORDERS where ORDERDATE between date('2015-03-18')
and date('2015-07-18') and AMOUNT>1000

/Standard SQL

2 =A1.sqltranslate("ORACLE")
/Translate standard SQL into Oracle
format

3 =A1.sqltranslate("MYSQL")
/Translate standard SQL into MYSQL
format

4 =connect("oracle").query(A2) /Connect Oracle and execute SQL

5 =connect("mysql").query(A3) /Connect MySQL and execute SQL

6 =[A4,A5].merge@ou(ORDERID)
/Order-based merge, during which orders
with same ID are removed

7 =A6.len() /Count the number

sql.sqltranslate(dbtype) function translates functions in standard SQL into the format of the specified

database. SPL script is as follows:

A7 Value

63

698

18.21 Translate standard SQL statements into specified database format

Standard SQL（A1）:

select ORDERID,CUSTOMERID,EMPLOYEEID,ORDERDATE,AMOUNT from ORDERS where

ORDERDATE between date('2015-03-18') and date('2015-07-18') and AMOUNT>1000

ORACLE（A2）:

select ORDERID,CUSTOMERID,EMPLOYEEID,ORDERDATE,AMOUNT from ORDERS where

ORDERDATE between TO_DATE('2015-03-18','YYYY-MM-DD') and TO_DATE('2015-07-

18','YYYY-MM-DD') and AMOUNT>1000

MYSQL（A3）:

select ORDERID,CUSTOMERID,EMPLOYEEID,ORDERDATE,AMOUNT from ORDERS where

ORDERDATE between DATE_FORMAT('2015-03-18','%Y-%m-%d') and DATE_FORMAT('2015-

07-18','%Y-%m-%d') and AMOUNT>1000

699

18.22 Parse and analyze HTML file

Parse HTML file and analyze the text.

Find the numbers in the body of an HTML file. Part of the contents of the file are as follows:

<!DOCTYPE html>

<html class="html__responsive html__unpinned-leftnav">

<head>

<title>Stack Overflow - Where Developers Learn, Share, & Build Careers</title>

<link rel="shortcut icon"

href="https://cdn.sstatic.net/Sites/stackoverflow/Img/favicon.ico?v=ec617d715196">

<link rel="apple-touch-icon" href="https://cdn.sstatic.net/Sites/stackoverflow/Img/apple-

touch-icon.png?v=c78bd457575a">

<link rel="image_src" href="https://cdn.sstatic.net/Sites/stackoverflow/Img/apple-touch-

icon.png?v=c78bd457575a">

…

</html>

700

A3

18.22 Parse and analyze HTML file

A B
1 =file("sof.html").read() /Read the html file

2 =A1.htmlparse()
/Use htmlparse() function to parse the HTML strings and return a
sequence of all the text

3 =A2.(~.words@d()).conj()
/Calculate the parsed sequence of text in loop, get the number in
each string, and then calculate the their concatenation

s.htmlparse() function gets all the text in an HTML file. SPL script is as follows:

Members

30

3

16.5

5

…

701

18.23 Parse HTML file to get table sequence

Parse an HTML file to generate a table sequence.

Parse the HTML file below to get the score table, and count the total score of each student.

<html>

…

<table id="tfhover" class="tftable" border="1">

<tr><th>CLASS</th><th>STUDENTID</th><th>SUBJECT</th><th>SCORE</th></tr>

<tr><td>Class one</td><td>1</td><td>Math</td><td>77</td>

<tr><td>Class one</td><td>1</td><td>PE</td><td>69</td>

<tr><td>Class one</td><td>1</td><td>English</td><td>84</td>

<tr><td>Class one</td><td>2</td><td>Math</td><td>80</td>

<tr><td>Class one</td><td>2</td><td>PE</td><td>97</td>

…

</table>

…

</html>

702

A3

18.23 Parse HTML file to get table sequence

A B
1 =file("table.html").read() /Read the html file

2 =A1.htmlparse("table":0)
/Use htmlparse() function to parse the HTML string and return all
the contents of the first table tag

3 =create(${A2(1).concat@c()}) /Create a table sequence table with the heading in the first row

4 =A3.record(A2.to(2,).conj())
/Insert the data starting from the second row in turn into A3's table
sequence

5 =A3.groups(STUDENTID; sum(SCORE):TOTALSCORE)
/Group and aggregate the student score table, and calculate the
total score of each student

s.htmlparse(tag:i:j) function gets the jth text under the ith tag in HTML format string s. SPL script is as follows:

STUDENTID TOTALSCORE

1 230

2 258

3 228

… …

703

18.24 Calculate the date N days after a certain date

Calculate the date N days after a certain date.

Find the orders of 2015 delivered on the second day and arrived within three days after the

delivery. The orders table is as follows:

ID CustomerID OrderDate DeliveryDate ArrivalDate Amount

10248 VINET 2012/07/04 2012/07/16 2012/08/01 428.0

10249 TOMSP 2012/07/05 2012/07/10 2012/08/16 1842.0

10250 HANAR 2012/07/08 2012/07/12 2012/08/05 1523.5

10251 VICTE 2012/07/08 2012/07/15 2012/08/05 624.95

10252 SUPRD 2012/07/09 2012/07/11 2012/08/06 3559.5

… … … … … …

704

A3

18.24 Calculate the date N days after a certain date

A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Orders") /Read the orders table

3
=A2.select(year(OrderDate)==2015 &&
OrderDate+1>=DeliveryDate &&
DeliveryDate+3>=ArrivalDate)

/Use the symbol "+" to calculate the date on the nth day after the
specified date.

Use date + n to calculate the date on the nth day after the specified date. SPL script is as follows:

ID CustomerID OrderDate DeliveryDate ArrivalDate Amount

11094 BERGS 2015/07/18 2015/07/18 2015/07/19 506.05

11101 AROUT 2015/07/18 2015/07/18 2015/07/20 130.0

11102 AROUT 2015/07/18 2015/07/19 2015/07/20 240.0

… … … … … …

705

18.25 Calculate the number of days between two dates

Calculate the number of days between two dates.

Find orders in 2015 whose delivery date is over 30 days after they are created. The orders table

is as follows:

ID CustomerID OrderDate DeliveryDate Amount

10248 VINET 2012/07/04 2012/07/16 428.0

10249 TOMSP 2012/07/05 2012/07/10 1842.0

10250 HANAR 2012/07/08 2012/07/12 1523.5

10251 VICTE 2012/07/08 2012/07/15 624.95

10252 SUPRD 2012/07/09 2012/07/11 3559.5

… … … … …

706

A3

18.25 Calculate the number of days between two dates

A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Orders") /Read the orders table

3
=A2.select(year(OrderDate)==2014 &&
DeliveryDate-OrderDate>30)

/Use the symbol "-" to calculate the number of days between the
delivery date and the order date

The symbol "-" is used to calculate the number of days between the two dates. SPL script is as follows:

ID CustomerID OrderDate DeliveryDate Amount

10924 BERGS 2014/03/04 2014/04/08 1835.7

10927 LACOR 2014/03/05 2014/04/08 800.0

10970 BOLID 2014/03/24 2014/04/24 224

707

18.26 Calculate the number of seconds / minutes between two datetimes

Calculate the number of seconds/minutes between two datetimes.

For each ID, accumulate values from the first time that 1 appears until 0 appears. If 0 does not appear, compare

the value with the system time. Part of the data is as follows:

ID Time Value

1 2020/07/08 15:00:00 1

1 2020/07/08 15:02:00 1

1 2020/07/08 15:04:00 1

1 2020/07/08 15:06:00 0

1 2020/07/08 15:08:00 0

1 2020/07/08 15:10:00 1

1 2020/07/08 15:20:00 0

2 2020/07/08 15:02:00 1

708

18.26 Calculate the number of seconds / minutes between two datetimes

A3

A B
1 =file("table.txt").import@t() /Read the file

2 =A1.group(ID).(~.group@o1(Value)|[null])

/Group by ID, then in each group, perform the merge grouping by checking
whether the adjacent values are same, and get the first record of each
subgroup. Add a null value to each group for the convenience of subsequent
calculation

3

=A2.news(~.len()\2;ID,(s=A2.~(#*2-
1).Time):StartTime,
interval@s(s,ifn(A2.~(#*2).Time,now()))/60:CumT
ime)

/In each group, make the time in the odd row the start time and the time of
corresponding even row the end time to calculate the interval duration. If the
corresponding even row is null, make the current system time the end time to
calculate the interval duration

now() function gets the current system date time. interval (datetimeExp1,datetimeExp2) function calculates the

interval between two date time type data, where @s option returns the interval in the unit of seconds. SPL script

is as follows:

ID StartTime CumTime

1 2020/07/08 15:00:00 6.0

1 2020/07/08 15:10:00 10.0

2 2020/07/08 15:02:00 28.0

709

18.27 Calculate the first day and last day of the week

Calculate the first day and last day of the week.

The current date is 2020/02/17. Calculate the growth rate of the SSE Composite Index last

week. Part of the data is as follows:

Date Open Close Amount

2020/02/17 2924.9913 2983.6224 3.67E11

2020/02/14 2899.8659 2917.0077 3.08E11

2020/02/13 2927.1443 2906.0735 3.35E11

2020/02/12 2895.5561 2926.8991 2.98E11

2020/02/11 2894.5414 2901.6744 3.03E11

… … … …

710

18.27 Calculate the first day and last day of the week

A7

A B
1 =file("sh000001.csv").import@cqt() /Read SSE Composite Index data

2 =A1.sort(Date) /Sort by date

3 =pdate@w(A2.m(-1).Date)
/Use @w option with pdate() function to select the first day (Sunday)
of the week that the day (2020/ 02/17) belongs to

4 =A2.select@z1(Date<=A3-2)
/Find the first record before last Friday from back to front, that is, the
last record of the previous trading week

5 =pdate@w(A4.Date) /Find the first day of the previous trading week (Sunday)

6 =A2.select@z1(Date<=A5-2)
/Find the first record of the previous Friday before last trading week
from back to front, that is, the last record of the week before the
previous trading week

7 =A4.Close/A6.Close-1 /Calculate the growth rate

pdate(dateExp) function gets the first day and the last day of the week / month / quarter that the specified date

dateExp belongs to. SPL script is as follows:

Value

0.01427

711

18.28 Calculate the average daily sales for a quarter

Calculate the average daily sales for each quarter.

Calculate the average daily sales for each quarter in 2014. Part of the data in the sales table is as

follows:

ORDERID CUSTOMERID EMPLOYEEID ORDERDATE AMOUNT

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

712

18.28 Calculate the average daily sales for a quarter

A5

A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Sales") /Read the sales table

3 =A2.select(year(OrderDate)==2014) /Select records of 2014

4
=A3.groups((month(OrderDate)+2)\3:Quarter;
sum(Amount):Amount)

/Group and aggregate by quarter, and calculate the total sales of
each quarter

5
=A4.run(Amount=Amount /
days@q(date("2014/"/(Quarter*3)+"/01")))

/Use days() function to calculate the number of days of each quarter,
and divide the total sales by the number of days to calculate the
average daily sales

days(dateExp) function gets the number of days in the year, quarter or month that the specified date dateExp

belongs to. @q option is used to get the number of days in the quarter that the specified date belongs to. SPL

script is as follows:

Quarter Amount

1 1765.33

2 1764.96

3 2034.56

4 2355.63

713

18.29 Calculate age

Calculate age based on birth date.

Find the average age of employees in each department. The employee table is as follows:

ID NAME BIRTHDAY HIREDATE DEPT SALARY

1 Rebecca 1974/11/20 2005/03/11 R&D 7000

2 Ashley 1980/07/19 2008/03/16 Finance 11000

3 Rachel 1970/12/17 2010/12/01 Sales 9000

4 Emily 1985/03/07 2006/08/15 HR 7000

5 Ashley 1975/05/13 2004/07/30 R&D 16000

… … … … … …

714

A3

18.29 Calculate age

A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Employee") /Read employee table

3 =A1.groups(DEPT; avg(age(BIRTHDAY)):AvgAge)
/Group records by department and calculate of the average age of each
department. The age() function is used to calculate the age of employees

age(x) function calculates the number of years from x to the current date. SPL script is as follows:

DEPT AvgAge

Administration 43.5

Finance 38.83

HR 41.05

… …

715

18.30 Calculate the date N months before a certain date

Calculate the date N months before a certain date.

Query the total sales amount in the three months before May 21, 2014. Part of the data in the sales

table is as follows:

ORDERID CUSTOMERID EMPLOYEEID ORDERDATE AMOUNT

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

716

18.30 Calculate the date N months before a certain date

A5

A B
1 =connect("db") /Connect to database

2 =A1.query("select * from Sales") /Read sales table

3 =date("2014/05/21") /Define a date

4
=A2.select(OrderDate>=elapse@m(A3,-3) &&
OrderDate<A3)

/Use elapse() function to calculate the date 3 months before A3's date.
Select data for the first three months from the sales table

5 =A4.sum(Amount) /Calculate the total sales amount

elapse(dateExp, n) function calculates the new date with a certain time difference from the specified date. If n is

a negative number, it gets a new date before n days / years / months. @m option is used to calculate a new

date that differs by n months from the specified date. SPL script is as follows:

Value

154074.49

717

18.31 Calculate the date after N working days

Calculate the date after N working days.

Calculate how many times that each employee has had when they cannot solve customer's problems for more

than 10 working days in 2014. Part of the data is as follows:

ID CustomerID EmployeeId QuestionDate SolveDate

1 OLDWO 2 2014/01/01 2014/01/09

2 WELLI 7 2014/01/01 2014/01/07

3 LAUGB 2 2014/01/01 2014/01/07

4 LINOD 8 2014/01/02 2014/01/08

5 REGGC 5 2014/01/02 2014/01/12

… … … … …

718

18.31 Calculate the date after N working days

A4

A B
1 =file("AfterSale.csv").import@ct() /Import AfterSale table

2

[2014/01/01,2014/01/26,2014/01/31,2014/02/03,2014/02/04,201
4/02/05,2014/02/06,2014/02/08,2014/04/07,2014/05/01,2014/05
/02,2014/05/04,2014/06/02,2014/09/08,2014/09/28,2014/10/01,
2014/10/02,2014/10/03,2014/10/06,2014/10/07,2014/10/11]

/Define holidays in 2014

3
=A1.select(year(QuestionDate)==2014 &&
workday(QuestionDate, 10, A2) < SolveDate)

/Use workday() function to calculate the date after 10
working days by skipping the holidays

4 =A3.groups(EmployeeId; count(~):Count) /Group and aggregate by employee and count times

workday (t, k, h) function calculates the date k working days away from the date t. h is a sequence of (non)

holidays, which means that if a date member is not a weekend, it's treated as a holiday. If a member is weekend, it

is treated as the working day. SPL script is as follows:

EmployeeID Count

1 2

2 1

3 2

… …

719

18.32 Get a sequence of working days

List the sequence of working days between two dates.

List the names of personnel on duty in each working day from 2020/04/27 to 2020/05/08. Part

of the contents of attendance table are as follows:

ID Date Name

1 2020/04/27 Emily

2 2020/04/28 Emily

3 2020/04/28 Johnson

4 2020/04/29 Emily

5 2020/04/30 Johnson

… … …

720

18.32 Get a sequence of working days

A5

A B
1 [2020/04/27,2020/05/08] /Define start date and end date

2 =workdays(A1(1),A1(2),[date("2020/05/01")])
/workdays() function gets the working days in the interval, excluding
May 1, which is a holiday

3 =file("Duty.txt").import@t() /Import duty table

4 =A3.align@a(A2, Date)
/Group duty table in alignment with the sequence of working days,
and all records are matching in each group

5 =A4.new(~.Date:Date, ~.(Name).concat@c():Names)
/Create a table sequence and concatenate the names in each group
with commas

workdays(b, e, h) function generates a sequence of working days between date b and date e, including b and e.

h is a sequence of (non) holidays, which means that if a date member is not a weekend, it's treated as a holiday. If a

member is weekend, it is treated as the working day. SPL script is as follows:

Date Names

2020/04/27 Emily

2020/04/28 Emily,Johnson

2020/04/29 Emily

… …

721

18.33 Get a sequence of dates between two dates

List the date sequence between two dates.

When overlapping parts are not counted repeatedly, calculate the total number of days

contained in multiple time periods. Part of the data is as follows:

ID Start End

1 2012/07/04 2012/07/16

2 2012/07/06 2012/07/10

3 2012/07/19 2012/07/24

4 2012/07/22 2012/07/25

5 2012/07/30 2012/08/02

… … …

722

A4

18.33 Get a sequence of dates between two dates

A B
1 =file("periods.txt").import@t() /Read periods from file

2 =A1.(periods(Start,End)) /Calculate the dates contained in each period in loop

3 =A2.union() /Find the union of dates

4 =A3.len() /Calculation the number of days

periods(s, e, i) function returns a sequence of time values spaced a specified period (i) apart from each other from

s to e (including endpoints). The default unit is day; i is 1 by default. SPL script is as follows:

Value

52

A2

Members

[2012/07/04,2017/07/05,…]

[2012/07/06,2017/07/07,…]

[2012/07/19,2017/07/20,…]

…

Members

2017/07/06

2017/07/07

2017/07/08

2017/07/09

2017/07/10

723

18.34 Divide the period between two dates equally into n segments

Divide the period between two dates equally into n segments.

Divide sales records from January 20, 2014 to January 20, 2015 (not included) into 4 groups according

to dates and store the groups in files respectively. Part of the the sales table is as follows:

ORDERID CUSTOMERID EMPLOYEEID ORDERDATE AMOUNT

10400 EASTC 1 2014/01/01 3063.0

10401 HANAR 1 2014/01/01 3868.6

10402 ERNSH 8 2014/01/02 2713.5

10403 ERNSH 4 2014/01/03 1005.9

10404 MAGAA 2 2014/01/03 1675.0

… … … … …

724

18.34 Divide the period between two dates equally into n segments

A3

A B C
1 =file("Sales.txt").import@qt() /Import sales table

2 [2014/01/20,2015/01/20] /Define start date and end date

3 for 4 =range(A2(1),A2(2), A3:4)
/Perform loop operation that uses the range function
to divide the date interval into 4 parts and return the
A3th two-members-sequence each time

4
=A1.select(B3(1)<=OrderDate &&
OrderDate<B3(2))

/Select records corresponding to the subinterval of
each date

5
=file("Sales"+string(B3(1),
"yyyyMMdd")+".txt").export@t(B4)

/Create file and export records selected by B4 to it

range (s,e,k:n) function divides the interval between s and e equally into n parts, returns the header of k and

k+1 segment as a two-members-sequence. SPL script is as follows:

Members

2014/01/20

2014/04/22

Members

2014/04/22

2014/07/22

Members

2014/07/22

2014/10/21

Members

2014/10/21

2015/01/20

725
www.raqsoft.com

	Chapter 1 Order-related Calculation
	1.1 Access a record with its sequence number
	1.2 Generate a nonexistent group name according to the sequence number in aggregate operation
	1.3 Group records and do calculation by sequence numbers in each group
	1.4 Define subsets by the initial sequence number and the specified step value
	1.5 Loop through sequence numbers to access records and do inter-row calculation
	1.6 Comparison of sequences
	1.7 Alignment calculation between members in sequences
	1.8 Compare whether two sequences are equal
	1.9 Location: locate a member in the sequence
	1.10 Location: grouping by the positions of members in a sequence
	1.11 Location: find a record by the position and do inter-row calculation
	1.12 Location: find records by positions and do inter-row calculation
	1.13 Location: Group & count by segment
	1.14 Location: Group & calculate average value by segment
	1.15 Location: obtain records by their original sequence numbers after sorting
	1.16 Location: Group members by positions repeatedly
	1.17 Location: check whether a record contains all specified members
	1.18 Location: determine whether a record exists by the primary key value
	1.19 Location: inter-row calculation over Top N records
	1.20 Select: find the record with the minimum value
	1.21 Select: find the record with the maximum value
	1.22 Select: search data by segment
	1.23 Select: Top N
	1.24 Select: Find a record according to the primary key value

	Chapter 2 Complex Query
	2.1 Get records by checking whether a target value is contained in a specified set
	2.2 Get records by checking whether a target value is contained in a specified set (the set is relatively large)
	2.3 Get records by matched foreign key values
	2.4 Get records by matched non-foreign-key values
	2.5 Speed up non-foreign-key mapping
	2.6 Get records by matched multi-field foreign key values
	2.7 An example of self join simplification
	2.8 Get records by mismatched foreign key values
	2.9 Get mismatched records
	2.10 An example of simplifying SQL double negation
	2.11 Get matching records
	2.12 Compare with all results of subquery

	Chapter 3 Top N
	3.1 Get the maximum value
	3.2 Get the sequence number of the record with the maximum value and do inter-row calculation
	3.3 Get another field value of the record with the maximum value
	3.4 Find top N field values
	3.5 Get the sequence numbers of records with top N values of a specified field
	3.6 Get records with top N values in a specified field
	3.7 Get other field values of the records with top N values of a specified field
	3.8 Get top N records in each group after grouping
	3.9 Perform grouping & aggregation and get top N records in each group

	Chapter 4 Grouping & Aggregation
	4.1 Aggregation operation: SUM
	4.2 Aggregation operation: MAX & MIN
	4.3 Aggregation operation: AVERAGE
	4.4 Aggregation operation：COUNT
	4.5 Aggregation operation： logic AND
	4.6 Aggregation operation：logic OR
	4.7 Aggregation operation： Count distinct members
	4.8 Aggregation operation：MEDIAN
	4.9 Aggregation operation：RANKING
	4.10 Aggregation operation： An application scenario of RANKING

	Chapter 5 Alignment grouping
	5.1 Group by the specified order, each group keeps only one record
	5.2 Group in specified order
	5.3 Group in specified order and put unmatched records in a new group
	5.4 Group by sequence number, each group keeps only one record
	5.5 Group by sequence number
	5.6 Repeatedly grouped by sequence numbers
	5.7 Group by segments of field values
	5.8 Group by segment according to expression result
	5.9 Group by enumerated conditions, records are not repeatedly grouped
	5.10 Group by enumerated conditions, unmatched records are put in a new group
	5.11 Repeatedly group by enumerated conditions

	Chapter 6 Subsets after grouping
	6.1 Inter-row calculation in subsets after grouping
	6.2 Group in the order of record and perform count
	6.3 Ordered conditional grouping
	6.4 Group by sequence number
	6.5 Multilevel grouping & aggregation
	6.6 Ordered grouping of big data
	6.7 Ordered conditional grouping of big data

	Chapter 7 Loop calculation
	7.1 Merge a sequence and a new member in loop
	7.2 Loop assignment
	7.3 Loop calculation: complex inter-row calculation
	7.4 Loop calculation: maximum continuous rising days
	7.5 Loop calculation: nested loop
	7.6 Loop calculation: loop number
	7.7 Loop calculation：calculate adjacent data by position during the loop calculation
	7.8 Loop calculation: iterative accumulation
	7.9 Loop calculation：group and calculate ranking
	7.10 Loop calculation： calculate dense ranking in each group
	7.11 Loop calculation: iterative sum
	7.12 Loop calculation: custom iterative calculation

	Chapter 8 Join query over multiple tables
	8.1 Perform filtering through multi-level association
	8.2 Switch foreign key field values to the corresponding records
	8.3 Get records by matched foreign key values
	8.4 Get records by mismatched foreign key values
	8.5 Join query over two tables
	8.6 Perform a multi-field join and conditional filtering over two tables
	8.7 Join query over multiple tables
	8.8 Join two tables of the same order by merging
	8.9 Join big data tables of the same order by merging
	8.10 Perform a left join by multi-field primary key of dimension table
	8.11 Perform a left join between two tables
	8.12 Perform a full join between two tables
	8.13 Cartesian product with filter condition
	8.14 Use Cartesian product to calculate matrix multiplication
	8.15 Use left join to calculate Cartesian product
	8.16 Join query between big data tables and large dimension table
	8.17 Fast join query between small data table and large dimension table
	8.18 Fast join query over same-order data tables and large dimension table
	8.19 Join two tables through locating records by sequence numbers
	8.20 Perform an alignment join by positions to shuffle values of a field
	8.21 Perform alignment join over multiple tables by sequence numbers
	8.22 Cross Apply operation
	8.23 Outer Apply operation
	8.24 Convert Apply operation to Cartesian product
	8.25 Complex uses of Apply operation

	Chapter 9 Inter-set operations
	9.1 Concatenation of two sets
	9.2 Intersection of two sets
	9.3 Union of two sets
	9.4 Difference of two sets
	9.5 XOR operation of two sets
	9.6 Mixed use of concatenation and difference
	9.7 Set operations of sequences: intersection and union
	9.8 Concatenation of all set members in a sequence
	9.9 The union of all set members in a sequence
	9.10 Merge same-order sets in the current order to calculate concatenation
	9.11 Merge same-order sets to calculate union
	9.12 Merge same-order sets to calculate intersection
	9.13 Merge same-order sets to calculate XOR
	9.14 Merge same-order sets to calculate difference
	9.15 Merge table sequences by primary key to calculate concatenation
	9.16 Merge table sequences to find differences
	9.17 Merge unordered tables to calculate union
	9.18 Aggregation of sequences: union & difference
	9.19 Aggregation of sequences：intersection
	9.20 Perform mixed set operations over two small files
	9.21 Perform complex set operations over two small files
	9.22 Merge two big data tables to calculate concatenation
	9.23 Merge two big data tables to calculate union

	Chapter 10 Transposition
	10.1 Row to column transposition
	10.2 Column to row transposition
	10.3 Bidirectional transposition
	10.4 Dynamic row to column transposition
	10.5 Row to column transposition with dynamic columns by filling into a table
	10.6 Convert multiple rows to multiple rows of another form
	10.7 Transpose rows to columns by position-based value assignment
	10.8 Transpose rows to columns, and do inter-column calculations at the same time
	10.9 Dynamic transposition after the main and sub table join
	10.10 Dynamic row to column transposition after multi-table join
	10.11 Transposition in column-layout

	Chapter 11 Recursion
	11.1 Recursively search single references
	11.2 Traverse all files in the directory
	11.3 Recursively search all references by loop
	11.4 Recursively search references until the specified value
	11.5 Search the upper level reference
	11.6 Find records with the specified value in the reference chain with the parent value listed
	11.7 Search for leaf records
	11.8 Find all upper level references
	11.9 Hanoi Tower problem
	11.10 Pirate treasure division problem
	11.11 Traverse the directories to summarize all the files

	Chapter 12 Using structured text data
	12.1 Filter small files
	12.2 Read certain fields in a text file
	12.3 Read data in a text file using specified separator
	12.4 Aggregate data in a small file to get sum
	12.5 Inter-column calculation in a small file
	12.6 Perform comprehensive calculations using small text files
	12.7 Read untitled structured text data
	12.8 Read a text file using specified data type and format
	12.9 Read structured text data according to the specified character set
	12.10 Sort data in a small text file in ascending order
	12.11 Sort data in a small text file in descending order
	12.12 Sort structured data in a small text file by multi fields in specified order
	12.13 Perform grouping & aggregation over a small file
	12.14 Perform filter after grouping over a small file
	12.15 Deduplication for a small file
	12.16 Count distinct for small file data
	12.17 Perform grouping & count distinct in each group over a small file
	12.18 Associatively query data over multiple files
	12.19 Join small files to query non-associative field
	12.20 Join small associative files into a wide table
	12.21 Combine data from multiple text files
	12.22 Divide data in a text file into groups and write them to different files
	12.23 Write data in a text file to different files according to judgements

	Chapter 13 Using structured big text file
	13.1 Filter a big file
	13.2 Perform aggregate sum over a big text file
	13.3 Inter-column calculation in a big text file
	13.4 Perform comprehensive calculations over a big text file
	13.5 Sort a big text file
	13.6 Sort a big text file in descending order
	13.7 Sort a big text file by multiple fields in specified order
	13.8 Find records in a big data table that match data in another big data table
	13.9 Perform grouping & aggregation over a big file, with small result set
	13.10 Perform grouping & aggregation over a big file, with large result set
	13.11 Filter after grouping over a big file
	13.12 Deduplication of big text file
	13.13 Count distinct over a big text file
	13.14 Group & count distinct in each group over a big text file
	13.15 Group a big file by values of a certain field, and query record containing the max value of another field in each group
	13.16 Combine & calculate data in multiple big data files
	13.17 The join filter over a large file and a small file
	13.18 Join a large file and a small file into a wide table to query
	13.19 Merge-join two big files
	13.20 Set operations of multiple big text files
	13.21 Divide a big text file into groups and write them to different files
	13.22 Write data in a large text file to different files according to judgements
	13.23 Organize a fixed-structure big text file into structured data
	13.24 Organize a big file with indefinite-line structure into structured data
	13.25 Find the lines containing keyword in all big text files in the specified directory
	13.26 Replace specified text in all text files under the specified directory
	13.27 Count the frequencies of each word in a big text file
	13.28 Count the frequencies of each letter in a big text file
	13.29 Remove duplicate lines from a big text file
	13.30 Remove repeated paragraphs from a big text file

	Chapter 14 Querying text data directly with SQL
	14.1 Filter
	14.2 Aggregate
	14.3 Inter-column calculation
	14.4 CASE statement
	14.5 Sort
	14.6 TOP-N
	14.7 Group & Aggregate
	14.8 Filter after grouping
	14.9 Select distinct
	14.10 Count distinct
	14.11 Count distinct in each group after grouping
	14.12 Join query over two text files
	14.13 Join query over multiple files
	14.14 Multi-level join query over multiple files
	14.15 Using nested subquery
	14.16 Using common table expression (CTE)
	14.17 Using command line to execute SQL

	Chapter 15 Using Excel data
	15.1 Read xlsx data in simple format
	15.2 Read xlsx data with complex header
	15.3 Read free format xlsx data
	15.4 Read the crosstab in an xlsx file
	15.5 Read the main & sub table in xlsx file
	15.6 Read big xlsx file
	15.7 Write a data table to xlsx file
	15.8 Append data table to xlsx file
	15.9 Write data table to different worksheets of an xlsx file
	15.10 Export a large amount of data to xlsx file
	15.11 Sort after join
	15.12 Specify display attributes
	15.13 Fill in the specified cell or area of an xlsx file
	15.14 Export row-style report to xlsx file
	15.15 Export multi-level grouped report to xlsx file
	15.16 Export crosstab report to xlsx file
	15.17 Combine multiple xlsx files of same structure
	15.18 Split an xlsx file and export it to different xlsx files

	Chapter 16 Using JSON and XML data
	16.1 Import single-layer JSON file
	16.2 Import multi-layer JSON file with same-structure detailed data
	16.3 Import multi-layer JSON file with different-structure detailed data
	16.4 Nested aggregation
	16.5 Get field values recursively & combine members of sequences recursively to get SUM
	16.6 Store a JSON file to the database
	16.7 Store a multi-layer JSON file to multiple database tables
	16.8 Output the data table as an XML string with elements only
	16.9 Import an element-only XML file and organize it according to specified format
	16.10 Import XML file with both elements and attributes
	16.11 Import XML file, perform alignment combing and then filtering
	16.12 Import elements with different structure of the specified layer from an XML file
	16.13 Import elements of the specified layer from an XML file with different sub-node element structure
	16.14 Join query over XML file and database data
	16.15 Parse XML data in batches
	16.16 Call external WebService according to parameters and import XML data
	16.17 Get different data from XML file according to parameters

	Chapter 17 Unstructured text handling
	17.1 Organize a multi-line, fixed-structure text
	17.2 Organize a varied structure text
	17.3 Parse text with regular expression and organize it into structured data
	17.4 Parse text with regular expression and organize it into structured data (One record corresponds to multiple lines)
	17.5 Read in text and perform transposition
	17.6 Organize a complex text file into structured data
	17.7 Search all text files in the specified directory to find the lines containing keywords
	17.8 Replace string in all text files in a specified directory
	17.9 Count the frequencies of each English word in a text file
	17.10 Remove duplicate lines from a text file
	17.11 Count the frequencies of each letter in a text file
	17.12 Remove duplicate paragraph from a text file

	Chapter 18 String & datetime handling
	18.1 Concatenate strings in two columns
	18.2 Concatenate string and other type of value
	18.3 Concatenate members in a sequence
	18.4 Add quotation marks to members when concatenating members of a sequence
	18.5 Convert a table sequence to CSV format
	18.6 Split a string into a sequence of characters
	18.7 Split strings into a sequence of words
	18.8 Use tab as a separator to split a string
	18.9 Use comma as the separator to split a string
	18.10 Split a string into two segments by specified separator
	18.11 Split a string with regular expression
	18.12 Parse a string into numerical value
	18.13 Parse a percentage string into a numerical value
	18.14 Automatically parse a string into the proper data type
	18.15 Split a string and parse the split members into proper data types
	18.16 Parse string to table sequence
	18.17 Parse the string type field in a table sequence with regular expression
	18.18 Parse indefinite-structure text with regular expression
	18.19 Use code to parse string type fields in a table sequence
	18.20 Modify the filter condition in the SQL statement
	18.21 Translate standard SQL statements into specified database format
	18.22 Parse and analyze HTML file
	18.23 Parse HTML file to get table sequence
	18.24 Calculate the date N days after a certain date
	18.25 Calculate the number of days between two dates
	18.26 Calculate the number of seconds / minutes between two datetimes
	18.27 Calculate the first day and last day of the week
	18.28 Calculate the average daily sales for a quarter
	18.29 Calculate age
	18.30 Calculate the date N months before a certain date
	18.31 Calculate the date after N working days
	18.32 Get a sequence of working days
	18.33 Get a sequence of dates between two dates
	18.34 Divide the period between two dates equally into n segments

