
esProc
Innovative big data computing engine

By Raqsoft

Reporting Process Optimization Engine

1 Solution

2 Competitive advantages

3 Tech features

C
O

N
T

E
N

T
S

1. An efficient Dev Tool specializing in structured data analysis & processing and

intended for programmers & data analysts;

2. Dynamic Java-based interpreted language that adopts innovative computing

model& original design to enable streamlined dev process & high performance;

3. With a rich class library & a lightweight architecture, esProc is flexible & cost-

effective in handling real-world problems.

esProc A computing problem buster！

esProc – Data computing layer

Presentation layer
(Any reporting tool)

Dynamic

concurrency control
Logging service

Presentation temp

Editor
Buffer sync

Computing layer

(esProc)
Script

Editor/Data set

In-memory

computing

Stream

computing

External memory

computing

Parameter query Static report Output Print

DB/DW FileSystem HDFS Others

Data sources

Data computing layer – A stand-alone tool & module

1. A data computing layer is completely independent of an app, in operation &

maintenance;

2. A modification in reporting module won’t affect the computing module.

Computing

tool

Independent

module

1. A computing tool helps to simplify the whole report development process;

2. Environment config (like data sources) becomes unnecessary; complex computing logics

are achieved with simple code;

3. A script for handling unstructured data sources, like Excel & text formats, is simple.

1 Solution

2 Competitive advantages

3 Tech features

C
O

N
T

E
N

T
S

Competitive advantages

Streamlined dev

process High performance

Optimized

structure

Efficient big data

reporting

Process-mode computation

The descriptive computing mode reporting tools use hampers

process-mode computations

To handle process-mode computations common to complicated

report dev, reporting tools use:

Hidden cell;

Java or stored procedure

Process-mode computations – Code examples

Find big customers whose sales amount accounts for the 1st half of the total.

Round-off error control

If there is disagreement between the detailed data and the totals after round-off, we need to find the

appropriate round-off values for the detailed values according to the round-off value of the totals.

A B C

1 Customer Amount =ds.sum(Amount)/2

2 =ds.select(Customer) =ds.Amount =C2[-1]+B2

3 NumOfVIP =count(B2{C2[-1]<C1})

4 AvgSales =avg(B2{C2[-1]<C1})

Hidden cell: Column C is set as hidden, with display condition C2[-1]<C1 in the 2nd row. Using a simple condition C2<=C1 will result in error

with the first row of the 2nd half. Besides, the conditional expression will be computed repeatedly, and some of the reporting tools’ special

functionalities, like cell set filtering, are needed.

esProc solution

A B

1 =db.query(“select Customer,Amount from CustomerSales order by Amount desc”)

2 =A1.sum(Amount)/2 =0

3 =A1.pselect((B1+=Amount)>=A2) return A1.to(A3)

A B

1 Customer Amount

2 =ds.select(Customer) =ds.Amount

3 NumOfVIP =ds.count()

4 AvgSales =ds.avg(Amount)

Stage 1: Data preparation

Step 2: Data reporting

The stepwise computation is clearer, and can

cooperate with any reporting tool

esProc vs JAVA

esProc is deeply set-oriented syntax, and thus can produce more concise code.

Java, however, doesn’t have direct support for structured data processing.

• Java-based esProc offers high-level

class library & methods

• The ratio of pseudo code to real code is about

1:1.5; most of the time, a data preparation

algorithm can be displayed within the screen

• Code can be displayed as much as possible in one

page, which is easy to understand and debug

Faster & Shorter Easy to understand & debug

esProc vs SQL/Stored procedure

1 SELECT CUSTOMER, AMOUNT, SUM_AMOUNT

2 FROM (SELECT CUSTOMER, AMOUNT,

3 SUM(AMOUNT) OVER(ORDER BY AMOUNT DESC) SUM_AMOUNT

4 FROM (SELECT CUSTOMER, SUM(AMOUNT) AMOUNT

5 FROM ORDERS GROUP BY CUSTOMER))

6 WHERE 2 * SUM_AMOUNT < (SELECT SUM(AMOUNT) TOTAL FROM ORDERS)

Stepwise computation makes debugging and development convenient;

Discreteness support enables deep set orientation & order-based computations

Find big customers whose sales amount accounts for the 1st half of the total.

Support of heterogeneous data sources

Reporting tools fall down on processing

heterogeneous data sources in terms of computing

ability & design capacity;

With esProc computing layer:

Data loading is unnecessary;

Multilevel data structure is supported; which facilitate

dev process;

SQLDB NoSQLDB File/HDFS

esProc

Dynamic data source/set

Dynamic data source

Parameter-controlled data source connection ${pds}.query("select * from T where F=?",pF)

Dynamic data set

Programming-logic-assisted dynamic SQL

Result set capacity control

A

1 =sums.array().("sum("+~+") as "+~).string()
/Convert member a, member b into sum(a) as a &

sum(b) as b

2 =db.query("select G,"+A1+" from T group by G")

A B

1 =db.cursor("select * from T") =A1.fetch(1000)

2 if B1.fetch@0(1) >B1.insert(0,“loop") /Insert a mark if all data isn’t fetched

3 >A1.close() return B1

Special report layouts

Layouts unsupported by reporting tools:

Horizontal column group

Append blank rows

A

1 =db.query("select * from T")

2 =pn-A1.len()%pn /Calculate the number of to-be-appended blank rows

3 =A1|if(A2!=pn,A2*[null]) /The result set with to-be-appended blank rows

A B C

1 =db.query("select a,b,c from T ")

2 =A1.step(3,1) =A1.step(3,2)|[null] =A1.step(3,3)|[null]

3 =A2.derive(B2(#).a:a2,B2(#).b:b2,B2(#).c:c2,C2(#).a:a3,C2(#).b:b3,C2(#).c:c3)

Competitive advantages

Optimized

structure

Efficient big data

reporting

Streamlined dev

process High performance

Reporting performance problems

Caused by inefficient data preparation

A reporting tool is only competent to handle a small amount of data;

Reporting stage optimization cannot solve slow data preparation

Efficient data preparation can be achieved, if

We: Use a better computing method;

Can reduce the use of hidden cells

eProc offers: Fast data read/write;

Manageable buffer capacity;

Shared memory resources

esProc computing layer – No hidden cells

Hidden cell Store intermediate results

Hidden cell

byproduct

Cells with appearance property use more memory resources, which reduces

reporting performance

Solutions
✓ A separate computing layer makes intermediate result reuse convenient;

✓ No hidden cells and appearance property leads to efficient memory use

Flexible SQL execution path

• Database transparency is user-friendly but execution-path-optimization-unfriendly;

• esProc supports flexible execution paths，and thus can execute certain computations outside the

database and increase the overall performance

select t.*

from (select *

from (select syb.org_abbreviation as syb,

max(xmb.org_abbreviation) as xmb,

sub.org_subjection_id as sub_id,

……

group by l.requisition_id,

l.note,

l.requisition_type,

……

left join cpl_rwdmx_view ve

on ve.requisition_id = a.req_id) t

1

2

3

4

5

298

299

300

364

365

PART1

PART2

SQL – 442

secs

esProc + SQL – 41

secs

Parallel retrieval

Data retrieval is critical to high reporting performance, but JDBC is so inefficient; esProc retrieves data by

segments in parallel by creating multiple database connections, which increases performance multiple

fold

A B C

1 fork 4 =connect(db)
/4 threads，which connects to database

respectively

2 =B1.query@x(“select * from T where part=?”,A1) /Retrieve 4 parts one by one

3 =A1.conj() /Union the returned result sets

Flexible buffer

… …

Buffer type 1 Buffer type 2 Buffer type n

Part1 Part2

Report A Report B Report C Report D

Life cycle

1 hour

Life cycle

2 hours

Life cycle

12 hours

esProc supports partial buffering, buffer reuse among reports, and different buffer life cycles

Shared memory resources

In a high concurrency

environment, esProc can use

shared memory mechanism to

achieve higher performance

and easier parallel processing

Memory

Data

source

Server

User ……

SQLDB NoSQLDB File/HDFS

Competitive advantages

Efficient big data

reporting

Streamlined dev

process High performance

Optimized

structure

Reduced coupling with interpreted execution

Report’s data preparation in Java and esProc：

JAVA

Low modularity

Java code has to be compiled and packaged

with the main app, causing tight coupling

“Cold” switching

A modification of report’s data preparation

algorithm in Java leads to an overall

recompilation & repackaging

esProc

High modularity

An esProc script file is stored and maintained

along with the report template，which creates

a separate reporting module

Hot switching

esProc interpreted execution enables hot

switching

External-database algorithms reduce stored procedures

Tight coupling between report components and database is caused by stored-procedure-

based data preparation algorithms

Separate storage makes it hard to match a stored procedure to its report;

Modifying stored procedures needs database privilege, posing potential security risks;

A stored procedure could be used by multiple apps, causing tight coupling between apps

Report’s data preparation in esProc will greatly reduce the use of stored procedure; an external algorithm

stored and managed with report template is a part of an app, which looses coupling between the report

and other parts of the app or other apps

External intermediate data helps to trim the database

Problems of intermediate tables resulted from accumulated data or complex computations:

Chaotic database

management

Accumulated app-generated,

linearly-stored intermediate

tables mess up the database

Wasted database

resource

Update of useless intermediate

tables with ETL is a waste of

resources

With esProc, it’s convenient-to-manage to put intermediate data in a file system outside the database; there will be

high IO performance & computing ability, and as few intermediate tables as possible and a slim database

Direct processing of various data sources & cross-

database computing ability

Advantages of handling various data sources directly:

1. The database becomes slim without data loading and the resulting
intermediate tables;

2. Real-time data retrieval reduces the risk of inconsistency;

3. Make best use of the strengths of each type of data source

Competitive advantages

Streamlined dev

process High performance

Optimized

structure

Efficient big

data reporting

Concatenate result sets of handling different databases

esProc concatenates result

sets returned from handling

a cluster of same-structure

or different-structure

databases in parallel, and

passes the aggregate to the

report

Report

Cluster of

multiple/heterogeneous

databases

esProc Thread 1 Thread 2 Thread 3

SQL Result SQL Result SQL Result

Aggregate

Report

Create T+0 reports via hybrid computing

Storage type & common problems of T+0 reports:

Store historical & current data in one database1

Huge amounts of historical data causes high

storage cost and low performance

Store historical & current data in different database2

Cross-database computing is required; it’s

complex & low-performance, and it’s hard to

implement over different types of databases

• esProc can:

• Perform queries over multiple different-

structure databases；

• Store historical data in the file system

with better IO performance and handle

it with cluster computing to get higher

performance with lower cost

External data & parallel processing

Database File system

Store data in

compressed

format

Columnar

storage

Memory

reference

Distributed

computing

Higher IO performance

Report app

ETL

A file system is better than a database in terms of IO performance，and supports storing data in a compressed

format, columnar storage, memory reference, and distributed computing; that makes external data processing is

higher performing and helps to reduce database workload

Hadoop

Hadoop: unsatisfactory computing mechanism

Complex dev process;

Result of computation needs to be loaded into RDB

Prepare Hadoop data in esProc for reporting

Easy dev process;

Support cluster computing and have a better performance;

No need of data loading to RDB

Summary

High efficiency

Rich syntax & class library

Hot switching

No need to restart app for interpreted

execution

To handle the reporting dynamicity and achieve expected goals，esProc adopts certain ways:

Loose coupling

Store algorithm along with its

report template

Easy dev process

No need to configure environment

& reference app-level

Modularity

Separate report data preparation

stage

Low cost

Suitable for non-professional

programmers

1 Solution

2 Competitive advantages

3 Tech features

C
O

N
T

E
N

T
S

esProc dev environment

Ready-to-use

Easy-to-debug

Execute/Debug/Step Set breakpoint

Simple syntax, natural & intuitive computing logic

WYSIWYG-style

interface that

enables easy

debugging and

convenient

intermediate result

reference
Real-time

system info

output

Procedure-oriented computing

Reliable loop branch control

Natural & clean step-by-step computation, direct reference of cell name

without specifically defining a variable

Agile syntax

Can you do it in a more natural way of thinking?

1 select max(ConsecutiveDays)

2 from (select count(*) ConsecutiveDays

3 from (select sum(ChangieMark) over(order by TradingDate) Non-risingDays

4 from (select TradingDate,

5
case when ClosingPrice>lag(ClosingPrice) over(order by

TradingDate)

6 then 0 else 1 end ChangeMark

7 from StockPrice))

8 group by Non-risingDays) SQL

A

1 =StockPrice.sort(TradingDate)

2 =0

3 =A1.max(A2=if(ClosingPrice>ClosingPrice[-1],A2+1,0))

esProc

Count the longest consecutively rising trading days for a stock

Syntax suitable for describing a natural way of thinking;

Data model enabling efficient algorithms

Rich class library

Intended for structured data processing

Set operations Ordered sets

Grouping & Loop Sorting & Filtering

Various data source interface

High-efficiency binary compressed format & columnar storage

RDB：Oracle,DB2,MS SQL,MySQL,PG,….

TXT/CSV，JSON/XML，EXCEL

Hadoop：HDFS，HIVE，HBASE

MongoDB，REDIS，…

HTTP、ALI-OTS

… …

Ready-to-use, built-in interface

Integration & management system

APPs（BIRT/JasperReport…）

esProc IDE

Data computing layer

esProc script（DFX）

esProc JDBC

Data strorage layer

（RDB/NoSQL/TXT/CSV/JSON/Hadoop）

Seamless integration & easy-to-manage code

Data stream models

Read data into

memory Statistical

analysis

Mobile apps

BI

Presentation layeresProc computing layerData Sources

Read data from

buffer and

output it

E
x
te

rn
a

l m
e

m
o

ry

c
o

m
p

u
tin

g

Data

buffer
Data

buffer

Data

buffer
Data

buffer

Output all data

ORACLE

ORACLE

MYSQL Periodic read

Read data,

computing the while

M
e
m

o
ry

c
o
m

p
u
tin

g

S
tre

a
m

c
o
m

p
u
tin

g Real-time

output

