

Reporting Process Optimization Engine

By Raqsoft

Solution

Competitive advantages

Tech features

esProc A computing problem buster!

- 1. An efficient Dev Tool specializing in structured data analysis & processing and intended for programmers & data analysts;
- Dynamic Java-based interpreted language that adopts innovative computing model& original design to enable streamlined dev process & high performance;
- 3. With a rich class library & a lightweight architecture, esProc is flexible & costeffective in handling real-world problems.

esProc – Data computing layer

Data computing layer – A stand-alone tool & module

Computing tool

A computing tool helps to simplify the whole report development process;
Environment config (like data sources) becomes unnecessary; complex computing logics

are achieved with simple code;

3. A script for handling unstructured data sources, like Excel & text formats, is simple.

Independent module

 A data computing layer is completely independent of an app, in operation & maintenance;

2. A modification in reporting module won't affect the computing module.

Competitive advantages

Tech features

Competitive advantages

Streamlined dev process

Optimized structure

Efficient big data reporting

The descriptive computing mode reporting tools use hampers process-mode computations

To handle process-mode computations common to complicated report dev, reporting tools use:

Hidden cell;

Java or stored procedure

Process-mode computations – Code examples

Find big customers whose sales amount accounts for the 1st half of the total.

	А	В	С
1	Customer	Amount	=ds.sum(Amount)/2
2	=ds.select(Customer)	=ds.Amount	=C2[-1]+B2
3	NumOfVIP	=count(B2{C2[-1] <c1})< th=""><th></th></c1})<>	
4	AvgSales	=avg(B2{C2[-1] <c1})< th=""><th></th></c1})<>	

Hidden cell: Column C is set as hidden, with display condition C2[-1]<C1 in the 2nd row. Using a simple condition C2<=C1 will result in error with the first row of the 2nd half. Besides, the conditional expression will be computed repeatedly, and some of the reporting tools' special functionalities, like cell set filtering, are needed.

Round-off error control

If there is disagreement between the detailed data and the totals after round-off, we need to find the appropriate round-off values for the detailed values according to the round-off value of the totals.

esProc solution

Stage 1: Data preparation

	A	В
1	=db.query("select Customer,Amount from CustomerSales order by Amo	unt desc")
2	=A1.sum(Amount)/2	=0
3	=A1.pselect((B1+=Amount)>=A2)	return A1.to(A3)

Step 2: Data reporting

	А	В
1	Customer	Amount
2	=ds.select(Customer)	=ds.Amount
3	NumOfVIP	=ds.count()
4	AvgSales	=ds.avg(Amount)

The stepwise computation is clearer, and can

cooperate with any reporting tool

esProc vs JAVA

esProc is deeply set-oriented syntax, and thus can produce more concise code. Java, however, doesn't have direct support for structured data processing.

Faster & Shorter

 Java-based esProc offers high-level class library & methods

Easy to understand & debug

- The ratio of pseudo code to real code is about 1:1.5; most of the time, a data preparation algorithm can be displayed within the screen
- Code can be displayed as much as possible in one page, which is easy to understand and debug

esProc vs SQL/Stored procedure

Find big customers whose sales amount accounts for the 1st half of the total.

1	SELECT CUSTOMER, AMOUNT, SUM_AMOUNT
2	FROM (SELECT CUSTOMER, AMOUNT,
3	SUM(AMOUNT) OVER(ORDER BY AMOUNT DESC) SUM_AMOUNT
4	FROM (SELECT CUSTOMER, SUM(AMOUNT) AMOUNT
5	FROM ORDERS GROUP BY CUSTOMER))
6	WHERE 2 * SUM_AMOUNT < (SELECT SUM(AMOUNT) TOTAL FROM ORDERS)

Stepwise computation makes debugging and development convenient;

Discreteness support enables deep set orientation & order-based computations

Support of heterogeneous data sources

Reporting tools fall down on processing heterogeneous data sources in terms of computing ability & design capacity;

With esProc computing layer:

Data loading is unnecessary;

Multilevel data structure is supported; which facilitate dev process;

Dynamic data source/set

R

Dynamic data source

Parameter-controlled data source connection \${pds}.query("select * from T where F=?",pF)

Dynamic data set

Programming-logic-assisted dynamic SQL

	A	
1	=sums.array().("sum("+~+") as "+~).string()	/Convert member a, member b into sum(a) as a & sum(b) as b
2	=db.query("select G,"+A1+" from T group by G")	

Result set capacity control

	А	В	
1	=db.cursor("select * from T")	=A1.fetch(1000)	
2	if B1.fetch@0(1)	>B1.insert(0,"loop")	/Insert a mark if all data isn't fetched
3	>A1.close()	return B1	

Special report layouts

Layouts unsupported by reporting tools:

Horizontal column group

员工号	姓名	3 41)	商工号	姓名	部门	员工号	姓名	841)
1	Rebecca	R&D	2	Ashley	Finance	3	Rachel	Sales
4	Emily	HR	5	Ashley	RBD	6	Matthew	Sales
7	Alexis	Sales	8	Megan	Marketing	9	Victoria	HR
10	Ryan	R&D	11	Jacob	Sales	12	Jessica	Sales
13	Daniel	Finance	14	Alyssa	Sales	15	Alexis	Sales
16	Christopher	Production	17	Hannah	Marketing	18	Jonathan	Administration

	А	В	С
1	=db.query("select a,b,c from T ")		
2	=A1.step(3,1)	=A1.step(3,2) [null]	=A1.step(3,3) [null]
3	=A2.derive(B2(#).a:a2,B2(#).b:b2,B2(#).c:c2,C2	(#).a:a3,C2(#).b:b3,C2(#).c:c3)	

Append blank rows

	A	
1	=db.query("select * from T")	
2	=pn-A1.len()%pn	/Calculate the number of to-be-appended blank rows
3	=A1 if(A2!=pn,A2*[null])	/The result set with to-be-appended blank rows

Competitive advantages

Reporting performance problems

Caused by inefficient data preparation

A reporting tool is only competent to handle a small amount of data;

Reporting stage optimization cannot solve slow data preparation

Efficient data preparation can be achieved, if

We: Use a better computing method;

Can reduce the use of hidden cells

eProc offers: Fast data read/write;

Manageable buffer capacity;

Shared memory resources

esProc computing layer – No hidden cells

Hidden cell Store intermediate results Cells with appearance property use more memory resources, which reduces Hidden cell byproduct reporting performance \checkmark A separate computing layer makes intermediate result reuse convenient; Solutions ✓ No hidden cells and appearance property leads to efficient memory use

Flexible SQL execution path

- Database transparency is user-friendly but execution-path-optimization-unfriendly;
- esProc supports flexible execution paths, and thus can execute certain computations outside the database and increase the overall performance

Parallel retrieval

Data retrieval is critical to high reporting performance, but JDBC is so inefficient; esProc retrieves data by segments in parallel by creating multiple database connections, which increases performance multiple fold

	Α	В	С
1	fork 4	=connect(db)	/4 threads, which connects to database respectively
2		=B1.query@x("select * from T where part=?",A1)	/Retrieve 4 parts one by one
3	=A1.conj()		/Union the returned result sets

Flexible buffer

esProc supports partial buffering, buffer reuse among reports, and different buffer life cycles

Shared memory resources

User In a high concurrency environment, esProc can use shared memory mechanism to Server Memory achieve higher performance and easier parallel processing Data source **SQLDB NoSQLDB File/HDFS**

Competitive advantages

Reduced coupling with interpreted execution

Report's data preparation in Java and esProc:

JAVA

Low modularity

Java code has to be compiled and packaged with the main app, causing tight coupling

"Cold" switching

A modification of report's data preparation algorithm in Java leads to an overall recompilation & repackaging

esProc

High modularity

An esProc script file is stored and maintained along with the report template, which creates a separate reporting module

Hot switching

esProc interpreted execution enables hot switching

External-database algorithms reduce stored procedures

Tight coupling between report components and database is caused by stored-procedure-

based data preparation algorithms

Separate storage makes it hard to match a stored procedure to its report;

Modifying stored procedures needs database privilege, posing potential security risks;

A stored procedure could be used by multiple apps, causing tight coupling between apps

Report's data preparation in esProc will greatly reduce the use of stored procedure; an external algorithm stored and managed with report template is a part of an app, which looses coupling between the report and other parts of the app or other apps

External intermediate data helps to trim the database

Problems of intermediate tables resulted from accumulated data or complex computations:

With esProc, it's convenient-to-manage to put intermediate data in a file system outside the database; there will be high IO performance & computing ability, and as few intermediate tables as possible and a slim database

Direct processing of various data sources & crossdatabase computing ability R

Advantages of handling various data sources directly:

1. The database becomes slim without data loading and the resulting intermediate tables;

2. Real-time data retrieval reduces the risk of inconsistency;

3. Make best use of the strengths of each type of data source

Competitive advantages

нI

Concatenate result sets of handling different databases

esProc concatenates result sets returned from handling a cluster of same-structure or different-structure databases in parallel, and passes the aggregate to the report

Create T+0 reports via hybrid computing

Storage type & common problems of T+0 reports:

Store historical & current data in one database

Huge amounts of historical data causes high storage cost and low performance

Store historical & current data in different database

Cross-database computing is required; it's complex & low-performance, and it's hard to implement over different types of databases

• esProc can:

- Perform queries over multiple differentstructure databases;
- Store historical data in the file system with better IO performance and handle it with cluster computing to get higher performance with lower cost

External data & parallel processing

A file system is better than a database in terms of IO performance, and supports storing data in a compressed format, columnar storage, memory reference, and distributed computing; that makes external data processing is higher performing and helps to reduce database workload

Hadoop

Hadoop: unsatisfactory computing mechanism

Complex dev process;

Result of computation needs to be loaded into RDB

Prepare Hadoop data in esProc for reporting

Easy dev process;

Support cluster computing and have a better performance;

No need of data loading to RDB

Summary

To handle the reporting dynamicity and achieve expected goals, esProc adopts certain ways:

Competitive advantages

Tech features

esProc dev environment

esProc [G:\esProc\es ^p roc\demo\zh\St	ructural\db09.	dfx] (For trial only, not	commercial	use)					_		×
e <u>E</u> dit <u>P</u> rogram <u>T</u> oo <mark>, <u>W</u>indow <u>H</u>elp</mark>											
📑 🛃 🕨 📭 📭 🖬		207 0									
= 1 =file("\\demo\\zh\\txt\\Sale	.txt").import@t()).select(month(Datetime)==6)							^	1.
db09.dfx						_				- đ	X
e Console		A	В	С	D	\$ 1	A2				P
ste <u>C</u> opy Clean	1 <mark>=file</mark>	e("\\demo\\zh\\bt\\Stock	bď").import@	t().select(month(Date	time)==6)		Index Date	time Cor	nmodity	Volume	^
18-12-17 17:40:19]	2 <mark>=file</mark>	e("\\demo\\zh\\bd\\Sale.t	ť").import@t().select(month(Datet	me)==6)		1 2009-0	6-01 08	20077	28	_
/ERE: For trial only, not commercial use	3 <mark>=file</mark>	e("\\demo\\zh\\bt\\Stora	ie.txt").import	@t().select(month(Da	te)==5)		2 2009-0	6-01 08 6-01 09	20056	41	-
	4 =file	e("\\demo\\zh\\\bxt\\Comn	nodity.txt").im	port@t()			4 2009-0	6-01 08	20034		
	5 '08:	00:00		'21:30:00			5 2009-0	6-01 08	20013	42	
	6 =pe	eriods@d(date("2009-6-	l"), date("200	19-6-30"), 1)			6 2009-0	6-01 08	20077		
	7 =A1	.align@a(A6:~,date(Dat	etime))				7 2009-0	6-01 08	20069	19	-
Dealtime	8 =A2	?.align@a(A6:~,date(Dat	etime))				9 2009-0	6-01 09 6-01 09	20011	22	-
Real-time	9 =A4	I.new(ID:Commodity,0:S	tock,:OosTim	e,0:TotalOosTime)			10 2009-0	6-01 09	20005	39	
system info	10 >A9).keys(Commodity)					11 2009-0	6-01 09	20085	31	
outout	11 =A3	.run(A9.find(Commodity).Stock=Stoc	ĸ			12 2009-0	6-01 09	20054		
output	12 🕤 for /	A6	=A7(#A12).ru	n(A9.find(Commodit).run(Stock=Stock+Volume))	13 2009-0	6-01 09	20011	4	~
	13		=A9.select(S	tock<=0).run(OosTim	e=string(A12)+" "+A5)		External si	gnature 📃	Internal signa	ature	
	14		= A8(#A12)	=A9.find(B14.Comm	odity)		Cellset variab	le Taskvari	able Global	variable	
	15			>C14.run(Stock=Sto	ck-B14.Volume)		No	Nome		Volue	=
	16			if C14 Stock<=0	>C14 OosTime=B14 Date	ime	NO.	Name		value	
	17		=A9.select(S	tock<=0)							
	Simple	e syntax, r	atura	l & intuitiv	ve computin	g lc	gic				
	19 -09	лахр(тотагоротние).е	ommouny								
	20										

WYSIWYG-style interface that enables easy debugging and convenient intermediate result reference

Ready-to-use Easy-to-debug

Procedure-oriented computing

Reliable loop branch control

	А	В	С	D	
1	=demo.query("SELECT ORD	ERID AS CONTRACT, CLIENT, SELLERID AS SALE, AN	OUNT, ORDERDATE AS	DATE FROM SALES")
2	=demo.query("SELECT * FROM EMPLOYEE")	=Year=2012			
3	>A1.run(SALE=A2.select@1 (EID:A1.SALE))	/Field Value is Record			
4	=A1.group(SALE)				
5	=create(Sale,ThisYear,Last)	ear,GrowthRate,NumOfClients,NumOfBigClients,	RatioOfBigClients)		
6 🤿	for A4	=A6(1).SALE.NAME			
7		=A6.select(year(DATE)==Year).sum(AMOUNT)	/Sales Amount This ye	ear	
8		=A6.select(year(DATE)==Year-1).sum(AMOUNT)	/Sales Amount Last Ye	ear	
9		=B8/B7-1			
10		=A6.group(CLIENT).(~.sum(AMOUNT))			
1 Na	atural & clean s	tep-by-step computation, d	lirect referenc	e of cell nam	e
	W	ithout specifically defining	a variable		
13		=B12/B11			
14		>A5.insert(0,B6,B7,B8,B9,B11,B12,B13)			
15	result A5				

Agile syntax

?

Count the longest consecutively rising trading days for a stock

1	select max(ConsecutiveDays)	
2	from (select count(*) ConsecutiveDays	
3	from (select sum(ChangieMark) over(order by TradingDate) Non-risi	ngDays
4	from (select TradingDate,	
5	case when ClosingPrice>lag(ClosingPrice) over(or TradingDate)	rder by
6	then 0 else 1 end ChangeMark	
7	from StockPrice))	
8	group by Non-risingDays)	SQL

	A
1	=StockPrice.sort(TradingDate)
2	=0
3	=A1.max(A2=if(ClosingPrice>ClosingPrice[-1],A2+1,0))

esProc

Syntax suitable for describing a natural way of thinking;

Data model enabling efficient algorithms

Can you do it in a more natural way of thinking?

Rich class library

Intended for structured data processing

	A		В		С
1	=esProc.query("SELI	ECT OrderID	AS Contract,Orderl	Date AS	/Retrieve Orders table
2	=A1.group(Seller)				
3	=create(Seller,Sales	(This year),S	ales (Last year),Cu	istomerN	umber,BigCustomerNumber)
4 😔	for A2		=A4(1).Seller		
5			=A4.select(year(D	ate)==Ye	ar).sum(Amount)
6			-A4 celect(vear(D	ate)Ye	ar-1) sum(Amount)
	~		=A4 group(Custor	ner) (~.su	im(Amount))
	G	rou	ping a	к L(pop
9			=B7.count(~>=100)00)	
10			>A3.insert(0,B4,B	5,B6,B8,E	9)
	A		В		С
1	=esProc.query("sele	ct * from Em	oloyees")		
2	=A1.select(Gender==	="Male")			
3	=A1.select(BirthDate	≻=date("197	0-01-01"))		
4	=A2^A3	/Intersection	;find the male emp	loyees w	ho were born after 1970
5	=A2&A3	/Union; find f	the male employee	s or the e	employees who were born after 1970
6	=A2\A3	/Difference; t	find the employees	who wer	e born before 1970
7	=A4.sum(Wages)				
		Sat	onora		
		Sel	opera		
10	/Set is a widely-used	, basic data f	type		
11					

	A		В	С	
1	=file("Transaction.txt").import@	2t0			
2	=A1.sort(CustomerID,Transact				
3	=A2.select(CarType=="Jetta" CarType=="Magotan").dup@t()				
4	=A3.derive(interval(TransactionDate[-1],TransactionDate):Interval)				
5	=A4.select(CarType=="Jetta" && CarType=="Magotan" && CustomerID==CustomerID[-1])				
6	=A5 avg(Interval)				
	0				
	Sorti	ng	& Filterii	ng	
9					
10					
		1			
	A		В	С	
1	A =esProc.query("select * from E	Employees	")	С	
1	A =esProc.query("select * from E =A1.sort(EntryDate)	Employees	")	C	
1 2 3	A =esProc.query("select * from E =A1.sort(EntryDate) =A2.pmin(BirthDate)	Employees /Seque	B ") nce number of the record	C of the oldest employee	
1 2 3 4	A =esProc.query("select * from E =A1.sort(EntryDate) =A2.pmin(BirthDate) =A2(to(A3-1))	Employees /Seque /Acces:	B ") nce number of the record s a record with the sequer	C of the oldest employee ice number	
1 2 3 4 5	A =esProc.query("select * from B =A1.sort(EntryDate) =A2.pmin(BirthDate) =A2(to(A3-1)) =esProc.query("select * from S	Employees /Seque /Acces: StockPrice	B ") nce number of the record s a record with the sequer table where StockCode='0	C of the oldest employee ice number)00062''')	
1 2 3 4 5 6	A =esProc.query("select * from E =A1.sort(EntryDate) =A2.pmin(BirthDate) =A2(to(A3-1)) =esProc.query("select * from S =A5.sort(TransactionDate)	Employees /Seque /Acces: StockPrice	B ") nce number of the record s a record with the sequer table where StockCode="C	C of the oldest employee ice number 100062'")	
1 2 3 4 5 6	A =esProc.query("select * from B =A1.sort(EntryDate) =A2.pmin(BirthDate) =A2(to(A3-1)) =esProc.query("select * from S =A5.sort(TransactionDate) =A6.nmax(ClosingPrice)	Employees /Seque /Acces: StockPrice	B ") nce number of the record s a record with the sequer table where StockCode="C	C of the oldest employee ice number 100062''') with the highest closing price	
1 2 3 4 5 6 7 8	A =esProc.query("select * from E =A1.sort(EntryDate) =A2.pmin(BirthDate) =A2(to(A3-1)) =esProc.query("select * from S =A5.sort(TransactionDate) =A6.nmax(ClosingPrice) =A6.calc(A7,ClosingPrice)	Employees /Seque /Acces: StockPrice	B ") nce number of the record s a record with the sequer table where StockCode="0 nce number of the record	C of the oldest employee ice number 100062'") with the highest closing price	
1 2 3 4 5 6 7 8	A =esProc.query("select * from E =A1.sort(EntryDate) =A2.pmin(BirthDate) =A2(to(A3-1)) =esProc.query("select * from S =A5.sort(TransactionDate) =A6.nmax(ClosingPrice) =A6.calc(A7,ClosingPrice)	Employees /Seque /Acces: StockPrice (Seque	B ") nce number of the record s a record with the sequer table where StockCode="C nce number of the record "ed sets	C of the oldest employee ice number 100062'") with the highest closing price	
1 2 3 4 5 6 7 8 9	A =esProc.query("select * from E =A1.sort(EntryDate) =A2.pmin(BirthDate) =A2(to(A3-1)) =esProc.query("select * from S =A5.sort(TransactionDate) =A6.pmax(ClosingPrice) =A6.calc(A7,ClosingPrice)	Employees /Seque /Access StockPrice (Seque CCET	B ") nce number of the record s a record with the sequer table where StockCode="C nce number of the record "ed sets ther	C of the oldest employee ice number)00062'") with the highest closing pric	

11

Various data source interface

- High-efficiency binary compressed format & columnar storage
- RDB: Oracle, DB2, MS SQL, MySQL, PG,
- ► TXT/CSV, JSON/XML, EXCEL
- Hadoop: HDFS, HIVE, HBASE
- MongoDB, REDIS, …
- ► HTTP、ALI-OTS
-
- Ready-to-use, built-in interface

Data stream models

Innovation makes progress!

A DESCRIPTION OF