
SPL

Raqsoft@2018

Structured Process Language

SPL
Structured Process Language

A procedure-oriented structured

data computing language

CONTENTS

01 Computing model

02 Engineering

04 Use cases

03 Scenarios

Set orientation Discreteness
Deep

set orientation
Orderliness

SPL features

Set orientation

Set-oriented

Structured data is always found in batches

set operations · lambda syntax · dynamic data structure

SQL is set-oriented

WHERE,ORDER BY,GROUP

INTERSECT,UNION,MINUS

Discreteness

Members of a set:

Can exist independently;

Can be computed separately, or join up with other separate

members to perform a set operation

SQL’s non-discreteness:

Permits only single-record tables, but not separate records;

Calculates each operation consistently and can’t retain any individual records

Case study

Calculate differences in age and salary in SPL

A

1 =employee.select@1(name==“Tom")

2 =employee.select@1(name==“Harry")

3 =A1.age-A2.age

4 =A1.salary-A2.salary

SQL solution

Calculate differences in age and salary in SQL

1 SELECT (SELECT age FROM employee WHERE name=‘Tom’)

2 - (SELECT age FROM employee WHERE name=‘Harry’) FROM dual

3 SELECT (SELECT salary FROM employee WHERE name=‘Tom’)

4 - (SELECT salary FROM employee WHERE name=‘Harry’) FROM dual

Case study

Update by a certain condition: Resellers ranked among the first 10% will be rewarded

5% of its performance

A

1 =agent.sort@z(amount).to(agent.len()*0.1) Get the first 10% of the resellers in performance

2 =A1.run(amount=amount*1.05) Offer a reward

The referencing foreign key: Find the records of transaction done in Beijing

A

1 >TRANSACTION.switch(AREA,AREA:ID) Create a referencing foreign key

2 =TRANSACTION.select(AREA.NAME==“Beijing”)
Filter records by the associated table’s key

referenced by the foreign key

Deep set orientation

Discreteness is indispensable to deep set orientation;

Discrete records can join up together to form a set

grouping subset · unconventional aggregation · main & sub tables

Grouping subset

Find subject records of students with score totaling over 500

A

1 =SCORE.group(STUDENTS).select(~.sum(SCORE)>=500).conj()

Discreteness enables pure grouping operation;

Due to the lack of explicit set data type formed by discrete records, SQL can’t help summarizing each grouping subset

and thus needs two traversals and joins

1 WITH T AS

2 (SELECT STUDENT FROM SCORE GROUP BY STUDENT HAVING SUM(SCORE)>500)

3 SELECT TT.* FROM T LEFT JOIN SCORE TT on T.STUDENT=TT.STUDENT

Grouping subset

Count User logins in 3 days before last login

A

1 =LOGIN. group(uid;~.max(logtime):last,~.count(interval(logtime,last)<=3):num)

In SQL it’s hard to write a complex aggregate query over grouping subsets with simple aggregate expression; in SPL it

becomes easy with step-by-step computation since subsets can be kept;

SQL needs subqueries, which mean multiple calculations, attached to the original data set

1 WITH T AS

2 (SELECT uid,max(logtime) last FROM LOGIN GROUP BY uid)

3 SELECT T. uid,T.last,count(TT.logtime)

4 FROM T LEFT JOIN LOGIN TT ON T.uid=TT.uid

5 WHERE T.last-TT.logtime<=3 GROUP BY T.uid,T.last

Unconventional aggregation

Find the first login records of users

A

1 =LOGIN.group(uid).(~.minp(logtime))

Getting a member from a set is also a kind of aggregate operation;

With discreteness, SPL performs such an aggregation directly over the grouping subsets

1 SELECT * FROM

2 (SELECT RANK() OVER(PARTITION BY uid ORDER BY logtime) rk, T.* FROM LOGIN T) TT

3 WHERE TT.rk=1

Unconventional aggregation

Get the interval between last two logins for each user

A

1 =LOGIN.groups(uid;top(2,-logtime)) Last two login records

2 =A1.new(uid,#2(1).logtime-#2(2).logtime:interval) Calculate intervals

An aggregate function can return a result set;

Deep set orientation makes it easy to perform an aggregation returning a set over grouping subsets

1 WITH T AS

2 (SELECT RANK() OVER(PARTITION BY uid ORDER BY logtime DESC) rk, T.* FROM LOGIN T)

3 SELECT uid,(SELECT TT.logtime FROM TT where TT.uid=TTT.uid and TT.rk=1)

4 -(SELET TT.logtim FROM TT WHERE TT.uid=TTT.uid and TT.rk=2) INTERVAL

5 FROM LOGIN TTT GROUP BY uid

Main& sub tables

Calculate amount from order details

A

1 =ORDER.derive(OrderDetail.select(ID==ORDER.ID):DETAIL)
Create a record type field for the sub

table

2 =A1.new(ID,CUSTOMER,DETAIL.sum(UnitPrice*QUANTITY):AMOUNT) Calculate order amount

A record type field is suitable to describe multilevel data, including main & sub tables;

Without explicit record data type, SQL is non-discrete and can’t reference individual records; a JOIN needs to precede a GROUP operation

1 SELECT ORDER.ID,ORDER.CUSTOMER,SUM(OrderDetail.PRICE)

2 FROM ORDER

3 LEFT JOIN OrderDetail ON ORDER.ID=OrderDetail.ID

4 GROUP BY ORDER.ID,ORDER.CUSTOMER

Orderliness

Order-based computations require deep set orientation and discreteness ; and

They are determined by both data itself and its position

cross-row reference · order-based grouping · position-based access

Relational algebra inherits the mathematical concept of unordered sets;

Early SQL would generate sequence numbers and perform a JOIN to perform a limited number of order-based computations

Order-based computations

1 WITH T AS

2 (SELECT rownum,TransactionDate,ClosingPrice

3 FROM (SELECT * FROM STOCK ORDER BY TransactionDate))

4 SELECT T1.TransactionDate,T1.ClosingPrice-T2.ClosingPrice

5 FROM T T1 JOIN T T2 ON T1.rownum=T2.rownum+1

SQL2003 standard offers window functions to generate sequence numbers and reference an adjacent row more conveniently

Calculate growth rate of stock

1 SELECT TransactionDate,ClosingPrice-LAG(ClosingPrice) OVER (ORDER BY TransactionDate) FROM STOCK

Cross-row reference

Calculate order amount from details

A

1 =SALES.sort(PRODUCT,MONTH)

2 =A1.select(if(PRODUCT==PRODUCT[-1],QUANTITY/QUANTITY[-1])>1.1 && AMOUNT/AMOUNT[-1])>1.1))

Ordered sets support cross-row reference;

A SQL window function needs a subquery to realize a cross-row reference; multiple references need multiple window functions

1 WITH T AS

2 (SELECT QUANTITY/LAG(QUANTITY) OVER(PARTITION BY PRODUCT ORDER BY MONTH) r1

3 (SELECT AMOUNT/LAG(AMOUNT) OVER(PARTITION BY PRODUCT ORDER BY MONTH) r2, A.*, FROM SALES A)

4 SELECT * FROM T WHERE r1>1.1 AND r2>1.1

Cross-row reference

Calculate MA of sales in the previous and next months

A

1 =SALES.sort(MONTH).derive(AMOUNT{-1,1}.avg()):MA)

Cross-row references apply more easily to ordered sets;

SQL window functions support only the simplest cross-row references, and, if a set is referenced, need to piece together one

1 WITH B AS

2 (SELECT LAG(AMOUNT) OVER (ORDER BY MONTH) f1, LEAD(AMOUNT) OVER (ORDER BY MONTH) f2, A.* FROM SALES A)

3 SELECT MONTH,AMOUNT,

4 (NVL(f1,0)+NVL(f2,0)+AMOUNT)/(DECODE(f1,NULLl,0,1)+DECODE(f2,NULL,0,1)+1) MA

5 FROM B

Order-based grouping

Count the baby groups that have at least 5 consecutively born boys/girls

A

1 =BABIES.sort(BirthDate).group@o(GENDER).count(~.len()>=5)

Besides equi-grouping, the grouping could be order-based;

The order-based grouping is defined on an ordered set; create a new group whenever the grouping field value is changed

1 SELECT COUNT(*) FROM

2 (SELECT NumOfChanges FROM

3 (SELECT SUM(ChangeValue) OVER (ORDER BY BirthDate) NumOfChanges FROM

4 (SELECT CASE WHEN GENDER=LAG(GENDER) OVER (ORDER BY BirthDate) THEN 0 ELSE 1 END ChangeValue FROM BABIES))

5 GROUP BY NumOfChanges HAVING COUNT(*)>=5)

Order-based grouping

Count the longest consecutive rising days for a stock

A

1 =STOCK.sort(TransactionDate).group@i(ClosingPrice<ClosingPrice[-1]).max(~.len())

Conditional-controlled order-based grouping

1 SELECT max(ConsecutiveDays)-1 FROM

2 (SELECT count(*) ConsecutiveDays FROM

3 (SELECT SUM(ChangeValue) OVER (ORDER BY TransactionDate) NonriseDays FROM

4 (SELECT TransactionDate,

5 CASE WHEN ClosingPrice>LAG(ClosingPrice) OVER(ORDER BY TransactionDate THEN 0 ELSE 1 END ChangeValue

6 FROM STOCK))

7 GROUP BY NonriseDays)

Hybrid computation

Find stocks that rise for 3 consecutive days

A

1 =STOCK.sort(TransactionDate).group(Code)

2 =A1.select((a=0,~.pselect(a=if(ClosingPrice>ClosingPrice[-1],a+1,0):3))>0).(Code)

A computation involving both grouping subsets and the order

1 WITH A AS

2 (SELECT Code,TransactionDate, ClosingPrice-LAG(ClosingPrice) OVER (PARITITION BY Code ORDER BY GrowthRate) FROM STOCK)

3 B AS

4 (SELECT Code,

5 CASE WHEN GrowthRate>0 AND

6 LAG(GrowthRate) OVER (PARTITION BY Code ORDER BY TransactionDate) >0 AND

7 LAG(GrowthRate,2) OVER PARTITION BY Code ORDER BY TransactionDate) >0

8 THEN 1 ELSE 0 END 3-DayConsRiseValue FROM A)

9 SELECT distinct Code FROM B WHERE 3-DayConsRiseValue=1

Position-based computation

Calculate median price of products

A

1 =PRICES.sort([Price).([(PRICES.len()+1)\2,PRICES.len()\2+1]).avg()

Access a member of an ordered set by its sequence number;

SQL needs to generate sequence numbers for un unordered set, and the non-stepwise style makes computation even more difficult

1 WITH N AS (SELECT COUNT(1) FROM PRICES)

2 SELECT AVERGE(PRICE) FROM

3 (SELECT PRICE,ROW_NUMBER() OVER (ORDER BY PRICE) r FROM PRICES) T

4 WHERE r=TRUNC((N+1)/2) OR r=TRUNC(N/2)+1)

Position-based access

Find a stock’s average growth rate in the 3 days with the highest prices

A

1 =STORCK.sort(TransactionDate)

2 =A1.calc(A1.ptop(3,-ClosingPrice),ClosingPrice-ClosingPrice[-1]).avg()

Ordered sets support various position-based accesses;

Unordered sets don’t support position-based access, resulting in complex query with more computations

1 SELECT AVG(GrowthRate) FROM

2 (SELECT TransactionDate, ClosingPrice-LAG(ClosingPrice) OVER (ORDER BY TransactionDate) GrowthRate FROM StockPrice

3 WHERE TransactionDate IN

4 (SELECT TransactionDate FROM

5 (SELECT TransactionDate, ROW_NUMBER() OVER(ORDER BY ClosingPrice DESC) Rank FROM STOCK)

6 WHERE Rank<=3)

Summary

Discreteness + set orientation

Set orientation is essential to batch processing;

Discreteness generates deep set orientation and enables order-based set computations

Discrete set model Set operations Discrete members= +

Deep set orientation/Ordered sets=>

CONTENTS

01 Computing model

02 Engineering

04 Use cases

03 Scenarios

esProc

Relational

algebra
SQL Database

Discrete

data set
SPL esProc

esProc is a discrete-data-

set-based software product;

SPL is its format language

Development environment

Execute/Debug/Step Set breakpoint

Simple syntax, natural & intuitive computing logic

WYSIWYG-style

interface that

enables easy

debugging and

convenient

intermediate result

reference
Real-time

system info

output

Specially-designed syntax

Particularly suitable for performing complex computations

Natural & clean step-by-step computation, direct reference of cell name without

specifically defining a variable

Intended for computing structured data

Rich class library

Set operations Ordered sets

Grouping & Loop Sorting & Filtering

Hot switch

Nonstop switching mechanism in interpreting and executing a script

Running

APP

.dfx

input output

Loose coupling

Script: separate storage & maintaining to achieve modularization

Business logic

Computing logic

Business logic

Computing logic

Integration-friendly

Developed in Java, esProc provides standard interface to be seamlessly integrated

with a third-party application

APP

esProc IDE

Computing layer

esProc script（DFX）

esProc JDBC/ODBC/HTTP

Data sources
（RDB/ NoSQL/ TXT/ CSV/ JSON/ Hadoop）

esProc directly computes

data from heterogeneous

sources without the need to

performing ETL

SQLDB NoSQLDB File/HDFS

Hybrid computing

Heterogeneous data sources

Data interface

➢ RDB：Oracle,DB2,MS SQL,MySQL,PG,….

➢ TXT/CSV，JSON/XML，EXCEL

➢ Hadoop：HDFS，HIVE，HBASE

➢ MongoDB，REDIS，…

➢ HTTP、ALI-OTS

➢ …

Built-in and ready-to-use

SQL query over files

Query NonSQL & files in SQL

C
lie

n
t s

id
e

SQL

Result

MongoDB

File

…

Enable SQL

queries over

NoSQL & files

CONTENTS

01 Computing model

02 Engineering

04 Use cases

03 Scenarios

Data computing

middleware

An integratable

computing layer to feed

data to an app

Data preparation

Prepare data for data

mining

Ad hoc computation

Handle ad hoc queries

and data extraction

Desktop analysis

Dynamic single-

machine analysis

APP

Data computing middleware

A data computing module situated between a data source and an app, a DCM offers

open computing ability, shares the conventional responsibility of a data source, and

reduces coupling

Data computing middleware

APP

Data sources
*Refer to <Data_Computing_Middleware.pptx>

Prepare data for data mining

Data preparation takes up over half of the data mining workloads;

SPL enables an open, flexible and simple method

SPL
Data

mining

Standard data

Ad hoc computation

SPL’s open computing ability can:

Handle improvised data extraction;

Handle spontaneous (external) data analysis & research;

Generate test data according to business rules;

Test optimization solutions to big data processing;

Handle unconventional (external) data cleansing & loading.

Desktop analysis

Execute/Debug/Step Set breakpoint

Simple syntax, natural & intuitive computing logic

WYSIWYG-style

interface that

enables easy

debugging and

convenient

intermediate result

reference
Real-time

system info

output

CONTENTS

01 Computing model

02 Engineering

04 Use cases

03 Scenarios

Code examples

Non-structured data

Structured data

Text-like data

Text processing Database computing

Grouping operation

Order-based computation

String & date handling

Non-structured data – Text processing

A

1 =file("T.txt").read@n().(~.split@tp(“ ”).to(-4).avg())

read@n() reads the text as a set of strings; split@t(“ ”) splits the set into a set of subsets by the

spaces; @p option parses each data item into a proper type automatically for calculation of averages.

R
e
a
l-w

o
rld

 p
ro

b
le

m

Data items in each line of T.txt are separated by an unspecified number of spaces：

2010-8-13 991003 3166.63 3332.57 3166.63 3295.11

2010-8-10 991003 3116.31 3182.66 3084.2 3140.2

……

List average of the last data items in each line.

Non-structured data - Structuralization

A B

1 =file(“S.log”).read@n()

2 =create(…) Create the target result set

3 for A1.group((#-1)\3) … Group the file every 3 lines

… … Parse field values from A3’s 3 lines

… >A2.insert(…) Insert values into the result set

… >file(“T.txt”).export(A2) Export the parsed data

With “group by line number” mechanism, we can handle groups one by one by loop, which

is easier. The special case is that there is only one line in each group.

R
e
a
l-w

o
rld

p
ro

b
le

m

In log file S.log, every 3 lines constitutes a piece of information.

Parse the file into structured data and save it to T.txt.

Non-structured data – Data searching

With the abilities of file traversal and text processing, esProc can get it done with two

lines of code.

A

1 =directory@p(“*.txt”)

2 =A1.conj(file(~).read@n().(if(pos(~,"xxx"),[A1.~,#,~].string())).select(~))

R
e

a
l-w

o
rld

p
ro

b
le

m

Not all OS support the grep command; and it’s not easy to realize it with code.

There are multiple text files in a directory. Find every file containing the

specified word and list the line(s) holding the word and its(their) number(s).

Structured data – Read & Write

import() function has rich parameters and options to determine if titles are read in or written

out, which delimiter is used, which columns will be read/write in and which data types they will

be. Most of the structured text can be read/write in with a one-liner.

This is similar to reading in a database table.

A

1 =file(“D.csv”).import@tc(name,sex,age,phone:string)

R
e
a
l-w

o
rld

p
ro

b
le

m

Comma-separated D.csv has multiple columns, each of which has a title.

Read in 4 columns: name,sex,age,phone; read numeric column phone as string

type

Structured data – Regular queries

esProc provides a rich variety of structured data computing functionalities to be able to treat the

text file as, to some extent, a database table.

A

1 =file(“D.csv”).import@tc(name,sex,age)

2 =A1.select(sex==“男”&& age>=25||sex==“女”&& age>=23) Filtering

3 =A2.sort(name) Sorting

4 =A2.groups(sex;avg(age):age) Grouping and aggregation

5 =A2.id(left(name,1)) Find distinct values

R
e
a
l-w

o
rld

p
ro

b
le

m

Find from text file D.csv men who are 25 and above and women who are 23 and

above, and 1) List them in alphabetical order of names；2) Group them by gender

and calculate age averages； 3) List all surnames.

Structured data - File comparison

A

1 =file(“T1.txt”).import@ti(id) With @i option, return a single-column result as a seqeunce

2 =file(“T2.txt”).import@ti(id)

3 =A1^A2 Intersection, which contains the common values

4 =A1\A2 Difference, which contains values that exist in T1 but don’t exist in T2

Use intersection and difference operations to compare column values

R
e
a
l-w

o
rld

p
ro

b
le

m

Both text files T1.txt and T2.txt have an id column:

Find their common id values;

Find id values existing in T1.txt but don’t exist in T2.txt.

Text-like data - JSON

{

“order”:[

{

“client”:”Raqsoft”,

“date”:”2015-6-23”,

“item” : [

{“product”:”HPLaptop”,“number”:4,“price”:3200},

{“product”:”DELLSever”,“number”:1,“price”:22100}]

},…]

}

Write JSON data to database:

Structure of order table: orderid,client,date；

Structure of orderdetail table :

orderid,seq,product,number,price

orderid and seq values are sequently generated.

R
e

a
l-w

o
rld

p
ro

b
le

m

Java has a sufficient rich class library to parse and generate JSON data, but it lacks the ability to
further compute the data;

esProc supports multilevel data. It can completely parse JSON data into a computable memory
data table for further processing.

Text-like data - JSON

{

“order”:[

{

“client”:”Raqsoft”,

“date”:”2015-6-23”,

“item” : [

{“product”:”HPLaptop”,“number”:4,“price”:3200},

{“product”:”DELLServer”,“number”:1,“price”:22100}]

},…]

}

A

1 =file(“data.json”).read().import@j().order

2 =A1.new(#:orderid,client,date)

3 =A1.news(item;A1.#:orderid,#:seq,product,number,price)

4 >db.update@i(A2,order)

5 >db.update@i(A3,ordedetail)

Text-like data - Excel

range.xls position.xls

range start stop Point position

Range1 4561 6321 point1 5213

Range2 9842 11253 point2 10254

… …

• position.xls stores positions of points; range.xls stores start points and end points of ranges.

• For each point in position.xls, find the first range from range.xls containing this point;

• Write points and their corresponding ranges to result.xls.

R
e

a
l-w

o
rld

p
ro

b
le

m

An Excel file is a structured file. Java’s powerful yet low-level open-source class libraries (like poi) can

parse xls files, but the development process is complex;

esProc encapsulates poi to read in an xls file as a 2-dimensional data table for further processing.

Text-like data - Excel

A

1 =file(“range.xls”).importxls@t()

2 =file(“position.xls”).importxls@t()

3 =A2.derive((t=A1.select@1(position>=start&&position<=stop)).range:range,t.start:start,t.stop:stop)

4 =file(“result.xls”).exportxls(A3)

esProc makes best use of its built-in computing abilities to process an imported xls file;

Excel VBA can hard-code JOINs, but the process is complicated. Sometimes data needs to be exported

to the database to be processed.

range.xls position.xls

range start stop Point position

Range1 4561 6321 point1 5213

Range2 9842 11253 point2 10254

… …

Dynamic columns – Cross-column summarization

A

1 =db.query("select * from PETestResults")

2 =A1.conj(~.array().to(2,)) Concatenate sequences of students’ grades for all

events (beginning from column 2)

3 =A2.groups(~:Grades;count(1):Number) Grouping & aggregation

esProc can get values from multiple columns to generate a sequence, over which the processing

of a dynamic number of columns becomes convenient

R
e
a
l-w

o
rld

p
ro

b
le

m

Structure of PETestResults table: Name, Sprint, Long-distance running, long jump, shot

put…; there are 4 grade levels: Excellent, Good, Pass, and Fail. Count students of every

grade level over all events.

Dynamic columns - Transposition

ID Account Balance Date

1 A Deficit 2014-1-4

2 A Normal 2014-1-8

3 A Missing 2014-3-21

…

Account 1 2 3 4 5 6 7 8 9 … 31

A Defi

cit

Defi

cit

Defi

cit

Defi

cit

Nor

mal

Nor

ma

… Nor

ma

...

Account Balance Table Account Balance Report

R
e
a
l-w

o
rld

p
ro

b
le

m

According to account balance table T, an Account Balance Report of a specified month is expected.

The report will display each day’s account balance in a certain month; if the balance of a date

remains unchanged, record it as that of the previous day.

S
Q

L

h
e
a
d
a
c
h
e
s

It is a static transposition. But as the involved columns are many and the transposition is regular,

it’s hard to code it statically;

Cross-column computation is involved; it’s not easy to code it in SQL, even using PIVOT

Dynamic columns - Transposition

ID Account Balance Date

1 A Deficit 2014-1-4

2 A Normal 2014-1-8

3 A Missing 2014-3-21

…

Account 1 2 3 4 5 6 7 8 9 … 31

A Def

icit

Def

icit

Def

icit

Def

icit

Nor

mal

Nor

mal

… Nor

mal

...

A B

1 =db.query("select * from T where year(Date)=? and month(Date)=?",2014,1)

2 =create(Account,${to(31).concat@c()})

3 for A1.group(Account) =31.(null)

4 >A3.run(B3(day(Date))=Balance)

5 >B3.run(~=ifn(~,~[-1])

6 >A2.record(A3.Account|B3)

7 return A2

Standard process of performing transposition: Use macro to generate the target result set in A2;

transpose data by loop in A3-B6 and insert values to the result set

Data grouping – interval-based non-equi-grouping

penum() function returns sequence numbers of enum conditions: [”?<60”,”?>=60&&?<75”,

”?>=75&&?<90”, “?>=90”].penum(scores)

pseg() function easily gets sequence numbers of the intervals from a continuous array, like

[60,75,90].pseg(scores)

Both enum conditions and a continuous interval are arrays that can be passed in as parameters

and that are unrestricted in length;

With sequence numbers, we can convert interval-based grouping into regular equi-grouping.

R
e
a
l-

w
o
rld

p
ro

b
le

m

Group data by intervals, such as grade levels (excellent, good…) and age groups (young,

middle-aged…).

Data grouping – Non-equi-grouping by specified order

• In esProc, align@s() function is used to perform alignment sorting：

T.align@s([“Beijing”,”Hebei”,”Shandong”,…],Provinces)

• The code sorts province table T in a specified order;

• The sorting condition can be passed in as a parameter.

R
e
a
l-w

o
rld

p
ro

b
le

m

Group data by a specified order. For instance, put Beijing at the beginning

when sorting provinces in China.

Data grouping – Inverse grouping

A

1 =db.query("select * from Instalment")

2
=A1.news(NumberOfInstalments;ID,~:InstalmentNumber,after@m(StartDate,~-

1):DueDate,TotalAmount/NumberOfInstalments:MonthlyAmount)

news() function calculates field values of a sequence and generate a multi-row new table sequence.

R
e

a
l-w

o
rld

p
ro

b
le

m

Structure of Instalment table: ID, TotalAmount, StartDate, NumberOfInstalments;

Split each loan into records of instalments, the structure is: ID, InstalmentNumber, DueDate,

MonthlyAmount. A total amount will be evenly distributed among monthly-payed instalments.

String and date handling- String

A

1 =db.query("select * from Students")

2 =A1.group(Class; ~.select(Gender==Male”).(Name).sort().concat@c():Boys,

~.select(Gender==“Female”).(Name).sort().concat@c():Girls)

esProc set data type relieves a string concatenation function of grouping operation and enables

various operations

R
e
a
l-w

o
rld

p
ro

b
le

m

A string concatenation problem. Structure of Students table is: Class, Name, Gender.

Group the table by Class and respectively list boys and girls as comma-delimited strings

sorted in alphabetical order in name.

String and date handling - Date

A

1 =db.query("select StartDate,EndDate from TravelLog")

2 =A1.conj(periods(StartDate,EndDate)).groups(~:Date,count(1):Number)

3 =A2.sort(Number:-1).to(5)

It’s easy to do it using the date splitting function periods()

R
e
a
l-w

o
rld

p
ro

b
le

m

Structure of TravelLog table is: Name, StartDate, EndDate…；

Find the 5 peak days during the travel.

THANKS
Innovation Makes Progress

